Cho biểu thức $P=\Big(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\Big).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}$ với $x>0, \, x \ne 1$.
a) Chứng minh $P=\dfrac{\sqrt{x}+1}{\sqrt{x}}$.
b) Tìm $x$ để $2P=2\sqrt{x}+5$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x>0; x<>9
a:\(P=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{3}{x\sqrt{x}-9\sqrt{x}}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3\sqrt{x}-3}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{x-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\cdot\sqrt{x}}:\dfrac{x-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\cdot\sqrt{x}}\)
\(=\dfrac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-3\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-3}\)
b: P>1
=>P-1>0
=>\(\dfrac{1-\sqrt{x}+3}{\sqrt{x}-3}>0\)
=>\(\dfrac{4-\sqrt{x}}{\sqrt{x}-3}>0\)
=>\(\dfrac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)
=>\(3< \sqrt{x}< 4\)
=>9<x<16
a: \(P=\left(\dfrac{2\sqrt{xy}}{x-y}-\dfrac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}-2\sqrt{y}}\right)\cdot\dfrac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(=\left(\dfrac{2\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}\right)\cdot\dfrac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{4\sqrt{xy}-\left(\sqrt{x}+\sqrt{y}\right)^2}{2\cdot\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\dfrac{2\sqrt{x}}{\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\dfrac{-x+2\sqrt{xy}-y}{\left(\sqrt{x}-\sqrt{y}\right)^2}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}=\dfrac{-\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)^2}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
\(=-\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
b: \(\dfrac{x}{y}=\dfrac{4}{9}\)
=>\(\dfrac{x}{4}=\dfrac{y}{9}=k\)
=>x=4k; y=9k
\(P=\dfrac{-\sqrt{x}}{\sqrt{x}+\sqrt{y}}=\dfrac{-\sqrt{4k}}{\sqrt{4k}+\sqrt{9k}}=\dfrac{-2\sqrt{k}}{2\sqrt{k}+3\sqrt{k}}=-\dfrac{2}{5}\)
a) Gọi x là số đo cung nhỏ AB (x > 0)
Số đo cung lớn AB là 3x
Ta có:
x + 3x = 360⁰
4x = 360⁰
x = 360⁰ : 4
x = 90⁰
Vậy số đo cung nhỏ AB là 90⁰
Số đo cung lớn AB là 3.90⁰ = 270⁰
b)
Do số đo cung nhỏ AB là 90⁰ (cmt)
⇒ ∠AOB = 90⁰
⇒ ∆AOB vuông tại O
Do OH là khoảng cách từ O đến AB
⇒ OH ⊥ AB
⇒ H là trung điểm của AB
⇒ OH là đường trung tuyến ứng với cạnh huyền AB của ∆AOB vuông tại O
⇒ OH = AB : 2
Gọi x là số đo cung nhỏ AB (x > 0)
Số đo cung lớn AB là 2x
Ta có:
x + 2x = 360⁰
3x = 360⁰
x = 360⁰ : 3
x = 120⁰
⇒ ∠AOB = 120⁰
∆AOB có:
OA = OB = R
⇒ ∆AOB cân tại O
⇒ ∠OAB = ∠OBA = (180⁰ - ∠AOB) : 2
= (180⁰ - 120⁰) : 2
= 30⁰
Ta có hình vẽ sau:
Vẽ đường cao OH của ∆OAB
⇒ ∆OAH vuông tại H
⇒ cosOAH = AH : OA
⇒ AH = OA.cosOAH
= R.cos30⁰
Do OH ⊥ AB
⇒ H là trung điểm của AB
⇒ AB = 2AH
Ta có: \(\widehat{ABC}=90^0\)
=>B nằm trên đường tròn đường kính AC(1)
Ta có: \(\widehat{ADC}=90^0\)
=>D nằm trên đường tròn đường kính AC(2)
Từ (1),(2) suy ra B,D cùng nằm trên đường tròn đường kính AC
=>A,B,C,D cùng thuộc đường tròn tâm O, đường kính AC
Xét (O) có
AC là đường kính
BD là dây
Do đó: BD<AC
Xét tứ giác BC'B'C có \(\widehat{BC'C}=\widehat{BB'C}=90^0\)
nên BC'B'C là tứ giác nội tiếp đường tròn đường kính BC
=>BC'B'C là tứ giác nội tiếp đường tròn tâm O, đường kính BC
Xét (O) có
BC là đường kính
B'C' là dây
Do đó: B'C'<BC
Gọi OH là khoảng cách từ O đến dây MN
=>OH\(\perp\)MN tại H
ΔOMN cân tại O
mà OH là đường cao
nên H là trung điểm của MN
=>\(HM=HN=\dfrac{R}{2}\)
ΔOHM vuông tại H
=>\(OH^2+HM^2=OM^2\)
=>\(OH^2=R^2-\left(\dfrac{R}{2}\right)^2=\dfrac{3R^2}{4}\)
=>\(OH=\sqrt{\dfrac{3R^2}{4}}=\dfrac{R\sqrt{3}}{2}\)
=>Khoảng cách từ O đến dây MN là \(\dfrac{R\sqrt{3}}{2}\)
Gọi giao điểm của MN với OA là H
Vì MN\(\perp\)OA tại trung điểm của OA
nên MN\(\perp\)OA tại H và H là trung điểm của OA
Xét ΔOMA có
MH là đường cao
MH là đường trung tuyến
Do đó: ΔOMA cân tại M
=>MO=MA
mà OM=OA
nên OM=MA=OA
=>ΔOMA đều
=>\(\widehat{MOA}=60^0\)
Xét ΔMHO vuông tại H có \(sinMOH=\dfrac{MH}{MO}\)
=>\(\dfrac{MH}{10}=sin60=\dfrac{\sqrt{3}}{2}\)
=>\(MH=10\cdot\dfrac{\sqrt{3}}{2}=5\sqrt{3}\left(cm\right)\)
ΔOMN cân tại O
mà OH là đường cao
nên H là trung điểm của MN
=>\(MN=2\cdot MH=2\cdot5\sqrt{3}=10\sqrt{3}\left(cm\right)\)
Giải:
Quãng đường còn lại người đó phải đi là:
150 \(\times\) (1 - \(\dfrac{1}{5}\)) = 120 (km/h)
Gọi vận tốc dự định là \(x\)(km/h) ; \(x\) > 0
Vận tốc thực tế là: \(x\) + 10 (km/h)
Thời gian người đó đi hết quãng đường còn lại với vận tốc dự định là:
120 : \(x\) = \(\dfrac{120}{x}\) (giờ)
Thời gian người đó đi hết quãng đường còn lại với vận tốc thực tế là:
120 : (\(x\) + 10) = \(\dfrac{120}{x+10}\) (giờ)
Đổi 36 phút = \(\dfrac{3}{5}\) giờ
Theo bài ra ta có phương trình:
\(\dfrac{120}{x}\) - \(\dfrac{120}{x+10}\) = \(\dfrac{3}{5}\)
120.(\(\dfrac{1}{x}\) - \(\dfrac{1}{x+10}\)) = \(\dfrac{3}{5}\)
120. \(\dfrac{x+10-x}{x\left(x+10\right)}\)= \(\dfrac{3}{5}\)
120.\(\dfrac{\left(x-x\right)+10}{x\left(x+10\right)}\) = \(\dfrac{3}{5}\)
\(\dfrac{120.10}{x\left(x+10\right)}\) = \(\dfrac{3}{5}\)
\(x\)(\(x\) + 10) = 120.10 : \(\dfrac{3}{5}\)
\(x\)(\(x+10\)) = 2000
\(x^2\) + 10\(x\) - 2000 = 0
\(\Delta\)' = 52 + 2000 = 2025 > Vậy phương trình có hai nghiệm phân biệt là
\(x_1\) = \(\dfrac{-5+\sqrt{2025}}{1}\) = 40 > 0(tm)
\(x_2\) = \(\dfrac{-5-\sqrt{2025}}{1}\) = - 50 < 0 (loại)
Vậy vận tốc ban đầu của người đó là 40 km/h
Thời gian thực tế người đó đi hết quãng đường AB là:
150 : 40 - \(\dfrac{3}{5}\) = 3,15 (giờ)
3,15 giờ = 3 giờ 9 phút
Kết luận: Vận tốc dự định của người đó là 40 km/h
Thời gian thực tế người đó đi hết quãng đường từ A đến B là 3 giờ 9 phút.
a: \(P=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\cdot\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: \(2P=2\sqrt{x}+5\)
=>\(2\left(\sqrt{x}+1\right)=\sqrt{x}\left(2\sqrt{x}+5\right)\)
=>\(2x+5\sqrt{x}-2\sqrt{x}-2=0\)
=>\(2x+3\sqrt{x}-2=0\)
=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)
mà \(\sqrt{x}+2>=2>0\forall x\) thỏa mãn ĐKXĐ
nên \(2\sqrt{x}-1=0\)
=>\(\sqrt{x}=\dfrac{1}{2}\)
=>\(x=\dfrac{1}{4}\left(nhận\right)\)