Rút gọn biểu thức A= 2/a-b+2/b-c+2/c-a+(a-b)^2+(b-c)^2+(c-a)^2/ (a-b)(b-c)c-a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Xét tg AKE và tg MBE có
AK//BM \(\Rightarrow\frac{AK}{BM}=\frac{AE}{ME}\left(1\right)\) (Talet trong tam giác)
Xét tg AHE và tg CME có
AH//CM \(\Rightarrow\frac{AH}{CM}=\frac{AE}{ME}\left(2\right)\) (Talet trong tam giác)
Từ (1) và (2) \(\Rightarrow\frac{AK}{BM}=\frac{AH}{CM}\)
b/
Xét tg AKN và tg CBN có
AK//BC \(\Rightarrow\frac{AN}{CN}=\frac{AK}{BC}\) (Talet trong tg)
Xét tg AHE và tg MCE có
AH//BC \(\Rightarrow\frac{AP}{BP}=\frac{AH}{BC}\) (Talet trong tg)
\(\Rightarrow\frac{AN}{CN}+\frac{AP}{BP}=\frac{AK}{BC}+\frac{AH}{BC}=\frac{HK}{BC}\) (1)
Xét tg HKE và tg CBE có
\(\frac{HK}{BC}=\frac{HE}{CE}\)(Talet trong tg) (2)
Xét tg AHE và tg MCE có
\(\frac{AE}{EM}=\frac{HE}{CE}\)(Talet trong tg) (3)
Từ (1) (2) (3) \(\Rightarrow\frac{AN}{CN}+\frac{AP}{BP}=\frac{AE}{EM}\)
Bài 3.11: Bạn dùng phương pháp đặt ẩn phụ.
a) \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)
Đặt \(x^2-5x=t\), phương trình đã cho trở thành: \(t^2+10t+24=0\)\(\Leftrightarrow t^2+4t+6t+24=0\)
\(\Leftrightarrow t\left(t+4\right)+6\left(t+4\right)=0\)\(\Leftrightarrow\left(t+4\right)\left(t+6\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t=-4\\t=-6\end{cases}}\)
Nếu \(t=-4\)\(\Leftrightarrow x^2-5x=-4\)\(\Leftrightarrow x^2-5x+4=0\)\(\Leftrightarrow x^2-x-4x+4=0\)\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)=0\)\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Nếu \(t=-6\)\(\Leftrightarrow x^2-5x=-6\)\(\Leftrightarrow x^2-5x+6=0\)\(\Leftrightarrow x^2-2x-3x+6=0\)\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{1;2;3;4\right\}\)
b) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
Đặt \(x^2+x+2=t\), nhận thấy \(t=x^2+x+2=\left(x^2+2x.\frac{1}{2}+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)nên điều kiện của t là \(t\ge\frac{7}{4}\)
Phương trình đã cho trở thành \(t\left(t-1\right)=12\)\(\Leftrightarrow t^2-t-12=0\)\(\Leftrightarrow t^2-4t+3t-12=0\)\(\Leftrightarrow t\left(t-4\right)+3\left(t-4\right)=0\)\(\Leftrightarrow\left(t-4\right)\left(t+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t=4\left(nhận\right)\\t=-3\left(loại\right)\end{cases}}\)
Mà \(t=4\)\(\Leftrightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)\(\Leftrightarrow x^2-x+2x-2=0\)\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{-2;1\right\}\)
c) Phương trình này bạn lấy \(x\left(x+1\right)=x^2+x\)rồi làm giống câu b