Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x^2 = a, y^2 = b, z^2 = c => abc = (xyz)^2 = 1
\(A=\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\)
\(=\frac{a\left(c+a-b\right)\left(a+b-c\right)+b\left(a+b-c\right)\left(b+c-a\right)+c\left(b+c-a\right)\left(c+a-b\right)}{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}\)
Ta có: \(a\left(c+a-b\right)\left(a+b-c\right)=a\left[a^2-\left(b-c\right)^2\right]=a^3-ab^2-c^2a+2abc\)
Tương tự: \(b\left(a+b-c\right)\left(b+c-a\right)=b^3-bc^2-a^2b+2abc\)
\(c\left(b+c-a\right)\left(c+a-b\right)=c^3-ca^2-b^2c+2abc\)
Tử thức của A = \(a^3+b^3+c^3-a^2b-ab^2-b^2c-bc^2-c^2a-ca^2+6abc\)
Lại có: \(\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)=\left(b+c-a\right)\left[a^2-b^2-c^2+2bc\right]\)
\(=-a^3-b^3-c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2-2abc\)
\(\Rightarrow A=\frac{a^3+b^3+c^3-a^2b-ab^2-b^2c-bc^2-c^2a-ca^2+6abc}{-a^3-b^3-c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2-2abc}\)
\(=\frac{4abc}{-a^3-b^3-c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2-2abc}-1\)
\(=\frac{4}{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}-1\)
\(=\frac{4}{\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)\left(x^2+y^2-z^2\right)}-1\)
4𝑥−2𝑥+1=2(12−𝑥)
2𝑥+1=2(12−𝑥)
2𝑥+1=2(−𝑥+12)
2𝑥+1=−2𝑥+24
2𝑥+1−1=−2𝑥+24−1
2𝑥=−2𝑥+23
2𝑥+2𝑥=−2𝑥+23+2𝑥
4𝑥=23
x=23/4
998989891193423894236429827289452985724896379627586439587438562735448 ko tin thì tính đi :))
(X+2)^2+(x-1)^2=2.(x+3).(x+1)
\(x^2+4x+4+x^2-2x+1=2x^2+8x+6\)
\(2x^2+2x+5=2x^2+8x+6\)
\(2x^2+2x-2x^2-8x=6-5\)
\(-6x=1\)
\(x=\frac{-1}{6}\)
vậy \(x=\frac{-1}{6}\)