K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 3

Lời giải:
Áp dụng TCDTSBN:

$\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{a(bz-cy)}{a^2}=\frac{b(cx-az)}{b^2}=\frac{c(ay-bx)}{c^2}$

$=\frac{a(bz-cy)+b(cx-az)+c(ay-bx)}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0$

$\Rightarrow bz-cy=cx-az=ay-bx=0$

$\RIghtarrow bz=cy, cx=az$

$\Rightarrow \frac{x}{a}=\frac{z}{c}; \frac{z}{c}=\frac{y}{b}$
$\Rightarrow \frac{x}{a}=\frac{y}{b}=\frac{z}{c}$

Ta có đpcm.

21 tháng 3

 Giải:

Một công nhân sẽ hoàn thành công việc đó trong:

  180 x 50  = 9 000 (ngày)

Thực tế số công nhân làm việc đó là: 

 50 - 5  = 45 (công nhân)

Vậy với 45 công nhân thì sẽ hoàn thành công việc đó trong:

  9 000 : 45 = 200 (ngày)

Kết luận:..

DT
21 tháng 3

20 tháng 3

 B = 2\(x^2\) + y; \(x=1\); y = 1

Thay \(x=1\); y = 1 vào B ta có:

B = 2.12 + 1

B = 2 + 1

B = 3

Thay x=1 và y=1 vào B, ta được:

\(B=2\cdot1^2+1=2+1=3\)

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

\(\widehat{ABD}=\widehat{MBD}\)

Do đó: ΔBAD=ΔBMD

b: Ta có: ΔBAD=ΔBMD

=>DA=DM

mà DM<DC

nên DA<DC

c: Xét ΔBKC có

KM,CA là các đường cao

KM cắt CA tại D

Do đó: D là trực tâm của ΔBKC

=>BD\(\perp\)KC tại N

Xét ΔKBC có

BN là đường cao

BN là đường phân giác

Do đó: ΔKBC cân tại B

a: Xét ΔKNP vuông tại K và ΔHPN vuông tại H có

NP chung

\(\widehat{KNP}=\widehat{HPN}\)(ΔMPN cân tại M)

Do đó: ΔKNP=ΔHPN

b: Ta có: ΔKNP=ΔHPN

=>\(\widehat{KPN}=\widehat{HNP}\)

=>\(\widehat{ENP}=\widehat{EPN}\)

=>ΔENP cân tại E

c: Xét ΔMEN và ΔMEP có

ME chung

EN=EP

MN=MP

Do đó: ΔMEN=ΔMEP

=>\(\widehat{EMN}=\widehat{EMP}\)

=>ME là phân giác của góc NMP

AH
Akai Haruma
Giáo viên
20 tháng 3

Lời giải:

a.

Ta thấy: $AB< AC< BC$

$\Rightarrow \widehat{C}< \widehat{B}< \widehat{A}$ (tính chất góc đối diện cạnh lớn hơn thì lớn hơn) 

b.

Xét tam giác $BDC$ có $CA, DK$ là 2 đường trung tuyến cắt nhau tại $M$ nên $M$ là trọng tâm tam giác $BDC$

$\Rightarrow MC=\frac{2}{3}CA=\frac{2}{3}.8=\frac{16}{3}$ (cm) 

c.

Do $Q$ nằm trên đường trung trực của $AC$ nên $QC=QA(1)$

$\Rightarrow QAC$ là hình tam giác cân tại $Q$

$\Rightarrow \widehat{QAC}=\widehat{QCA}$

$\Rightarrow 90^0-\widehat{QAC}=90^0-\widehat{QCA}$

$\Rightarrow \widehat{DAQ}=\widehat{QDA}$

$\Rightarrow QAD$ cân tại $Q$
$\Rightarrow QA=QD(2)$

Từ $(1); (2)\Rightarrow QD=QC$

$\Rightarrow BQ$ là trung tuyến của tam giác $BDC$ ứng với cạnh $DC$

Mà theo phần b, $M$ là trọng tâm của $BDC$ nên $BM$ cũng là đường trung tuyến của $BDC$ ứng với cạnh $DC$

$\Rightarrow B,Q,M$ thẳng hàng.

AH
Akai Haruma
Giáo viên
20 tháng 3

Hình vẽ:

NV
19 tháng 3

\(A=\dfrac{\left|x-2022\right|+2024-1}{\left|x-2022\right|+2024}=1-\dfrac{1}{\left|x-2022\right|+2024}\)

Do \(\left|x-2022\right|\ge0;\forall x\Rightarrow\left|x-2022\right|+2024\ge2024\)

\(\Rightarrow-\dfrac{1}{\left|x-2022\right|+2024}\ge-\dfrac{1}{2024}\)

\(\Rightarrow A\ge1-\dfrac{1}{2024}=\dfrac{2023}{2024}\)

\(A_{min}=\dfrac{2023}{2024}\) khi \(x-2022=0\Rightarrow x=2022\)