Năm 1400, Hà Nội có tên gọi là gì?
A. Đông Đô
B. Thăng Long
C. Đông Quan
D. Đông Kinh
hép me, pls
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Khi đó, ta có:
Do AM là đường trung trực của đoạn BM và đoạn CM, và MI là đường trung trực của đoạn BC, nên ta có AM và MI là hai đường trùng nhau, do đó A, M, I thẳng hàng.
Từ đó suy ra:
Vậy ta có:
góc AMB + góc AHB = góc AMC + góc AHC
Do đó, tam giác AMB bằng tam giác AMC theo trường hợp góc - góc - góc của hai tam giác.
- Vì AM là trung tuyến tam giác ABC (gt)
=> BM = CM (định nghĩa)
- Xét tam giác AMB và tam giác AMC, có:
+ BM = CM (cmt)
+ AB = AC (gt)
+ Chung AM
=> tam giác AMB = tam giác AMC (ccc)
- Vậy tam giác AMB = tam giác AMC theo trường hợp cạnh - cạnh - cạnh
Tự kẻ hình nha
a) - Vì tam giác ABC cân tại A (gt)
=> AB = AC (định nghĩa)
góc ABC = góc ACB (dấu hiệu)
- Vì AH vuông góc với BC (gt)
=> tam giác ABH vuông tại H (tc)
tam giác ACH vuông tại H (tc)
- Xét tam giác vuông ABH và tam giác vuông ACH, có:
+ AB = AC (cmt)
+ Chung AC
=> tam giác vuông ABH = tam giác vuông ACH (cạnh huyền - cạnh góc vuông)
b) - Vì tam giác vuông ABH = tam giác vuông ACH (cmt)
=> BH = CH (2 cạnh tương ứng)
=> AH là đường trung tuyến tam giác ABC (dấu hiệu)
- Vì N là trung điểm của AC (gt)
=> BN là đường trung tuyến tam giác ABC (dấu hiệu)
Mà G là giao điểm của BN và AH (gt)
=> G là trọng tâm của tam giác ABC (tc)
- Xét tam giác ANG và tam giác CNK, có:
+ NG = NK (gt)
+ AN = CN (N là trung điểm của AC)
+ góc ANG = góc CNG (đối đỉnh)
=> tam giác ANG và tam giác CNK (cgc)
=> góc AGN = góc CKN (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AG // CK (dấu hiệu)
c) - Vì G là trọng tâm của tam giác ABC (cmt)
=> BG = 2/3 BN (tc)
=> NG = 1/3 BN
Mà NK = NG (gt)
=> NK = 1/3 BN
=> NK + NG = 1/3 BN + 1/3 BN
=> GK = 2/3 BN
Mà BG = 2/3 BN (cmt)
=> GK = BG
=> G là trung điểm BK
2x+\(\dfrac{7}{3}\)=\(\dfrac{3}{2}\)
2x=\(\dfrac{3}{2}\)-\(\dfrac{7}{3}\)
2x=\(\dfrac{-4}{6}\)
x=\(\dfrac{-2}{3}\)/2
x=\(\dfrac{-1}{3}\)
2x+7/3=3/2
2x=3/2-7/3
2x=9/6-14/6
2x=-5/6
x=-5/6:2
x=-5/6.1/2
x=-5/12
Ý mình là chứng minh tam giác đó, giao điểm đó như thế nào!
Ví dụ: Chứng minh HP=HQ.Chứng minh G là trọng tâm của tam giác MPQ.Tính GM/GH.Gọi giao điểm của QG với MP là B.Chứng minh MH là trung trực của AB
Tự kẻ hình nha
- Vì tam giác ABC vuông tại A (gt)
=> CA vuông góc với AB (tc)
=> tam gics ADC vuông tại A (tc)
- Xét tam giác vuống ABC và tam giác vuông ADC, có:
+ Chung AC
+ AB = AD ( A là trung điểm BD)
=> Tam giác vuông ABC = tam giác vuông ADC (2 cạnh góc vuông)
- Vì tam giác vuông ABC = tam giác vuông ADC (cmt)
=> CB = CD (2 cạnh tương ứng)
=> tam gics CBD cân (định nghĩa)
- Vì A là trung điểm BD (gt)
=> CA là trung tuyến tam giác CBD (dấu hiệu)
- Vì K là trung điểm BC (gt)
=> DK là trung tuyến tam gics CBD (dấu hiệu)
Mà CA và DK cắt nhau tại M (gt)
=> M là trọng tâm tam giác CBD (tc)
=> MC = 2/3 CA (tc)
=> MC = 2MA (đpcm)
- Gọi d là đường trung trực của AC
- Gọi N là giao điểm của AC và d
- Vì d là đường trung trực của AC (cách gọi)
=> d vuông góc với AC
=> góc QNC = 90o (tc) 1
=> AN = CN
- Vì tam giác ADC vuông tại A (cmt)
=> góc DAC = 90o (tc) 2
Từ 1 và 2 ta có:
=> DA // QN (đồng vị)
- Xét tam giác vuông QNA và tam giác vuông QNC, có:
+ Chung QN
+ AN = CN (cmt)
=> tam giác vuông QNA = tam giác vuông QNC (2 cạnh góc vuông)
=> góc AQN = góc CQN (2 góc tương ứng)
=> QA = QC (2 cạnh tương ứng)
- Vì DA // QN (cmt)
=> góc DAQ = góc AQN (so le trong)
=> góc CQN = góc ADQ (đồng vị)
Mà góc AQN = góc CQN (cmt)
=> góc DAQ = góc ADQ
=> tam giác QAD cân tại Q (dấu hiệu)
=> QA = QD (định nghĩa)
Mà QA = QC (cmt)
=> QD = QC
=> MQ là trung tuyến của DC
Mà M là trọng tâm của tam giác CBD (cmt)
=> BQ là trung tuyến tam giác CBD (tc)
=> B, M, Q thằng hàng (đpcm)
A. Đông Đô
a.Đông Đô