Điều kiện xác định của phân thức : x-4/2x+6 là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Mình chỉ biết làm a, b còn c, d mình không biết. Bạn thông cảm ạ.
a. Có: DM vuông góc với AC; DN vuông góc với BC; AC vuông góc với BC
=> CMDN là hình chữ nhật
b. Xét tam giác abc VUÔNG TẠI a:
D là trung điểm AB
=> CD là đường trung tuyến
=> CD = DB = AD
=> Tam giác CDB cân tại D
Mà DN vuông góc với BC
=> DN là đường cao và cũng là trung tuyến
=> CN = NB
Xét tứ giác DCEB:
CN = NB
DN = NE
Mà DE vuông góc BC
=> Tứ giác DCEB là hình thoi.
c) Xét tam giác \(ABC\)vuông tại \(C\)có:
\(AB^2=AC^2+BC^2\)(định lí Pythagore)
\(\Leftrightarrow AC^2=AB^2-BC^2=10^2-6^2=64=8^2\)
suy ra \(AC=8\left(cm\right)\).
\(DM\)vuông góc với \(AC\)mà \(AB\perp AC\)suy ra \(DM//AB\)
mà ta lại có \(D\)là trung điểm của \(AB\)
nên \(DM\)là đường trung bình của tam giác \(ABC\).
Suy ra \(DM=\frac{1}{2}BC=\frac{1}{2}.6=3\left(cm\right)\)
Tương tự ta cũng suy ra \(DN=\frac{1}{2}AC=4\left(cm\right)\).
\(S_{CMDN}=DM.DN=3.4=12\left(cm^2\right)\).
d)
Có \(CDBE\)là hình thoi nên để \(CDBE\)là hình vuông thì \(CD\perp BE\).
Xét tam giác \(ABC\)có \(D\)là trung điểm \(AB\)mà \(CD\perp BE\)nên tam giác \(ABC\)cân tại \(C\).
Vậy tam giác \(ABC\)vuông cân tại \(C\).
\(n^6-n^2=n^2\left(n^4-1\right)=n^2\left(n^2-1\right)\left(n^2+1\right)=n^2\left(n^2-1\right)\left(n^2-4+5\right)\)
\(=n^2\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n^2\left(n-1\right)\left(n+1\right)\)
\(=n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n^2\left(n-1\right)\left(n+1\right)\)
Vì \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp
=>\(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\)
Mà n(n-1)(n-2) và n(n+1)(n+2) là tích 3 số nguyên liên tiếp
=>n(n-1)(n-2) chia hết cho 2 và 3 ; n(n+1)(n+2) chia hết cho 2 và 3
=> \(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) chia hết cho 4 và 3
Do đó \(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮3.4.5=60\) (1)
- Nếu n lẻ thì n-1,n+1 chẵn hay (n-1)(n+1) chia hết cho 4
=>\(5n^2\left(n-1\right)\left(n+1\right)⋮20\)
Mà \(n\left(n-1\right)\left(n+1\right)⋮3\)
=>\(5n^2\left(n-1\right)\left(n+1\right)⋮60\)
- Nếu n chẵn thì \(n^2⋮4\)
\(\Rightarrow5n^2\left(n-1\right)\left(n+1\right)⋮20\)
Mà \(n\left(n-1\right)\left(n+1\right)⋮3\)
\(\Rightarrow5n^2\left(n-1\right)\left(n+1\right)⋮60\)
Từ 2 trường hợp trên => \(5n^2\left(n-1\right)\left(n+1\right)⋮60\) (2)
Từ (1) và (2) => \(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n^2\left(n-1\right)\left(n+1\right)⋮60\) hay \(n^6-n^2⋮60\) (đpcm)
Ta có:
A = n6-n2 = n2(n4 - 1) = n2(n2-1)(n2+1)=(n2 -1).n2.(n2+1)
Vì đây là tích của ba số tự nhiên liên tiếp nên chia hết cho 3 bên cạh đó nó còn chia hết cho 4 (giải thích chia hết cho 4: vì n^2 là số chính phương nên có dạng là 4k + 1 hoặc 4K nên (n2-1).n2.(n4+1) chia hết cho 4)
=> chia hết cho 12 (1)
Tiếp đến ta có (n2-1)(n2+1) chia hết cho 5 (2). (chứng minh: cho n=5k + r với 0 thuộc tập hợp <5, thì ta đều có tích (n2-1)(n2+1) chia hết cho 5)
(1)(2) => A chia hết cho 60 vì (12;5)=1
TL
2x+6 ≠ 0
<=> 2x ≠ -6
<=> x ≠-3
Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!