K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
30 tháng 9 2021

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}=\frac{1+a^2}{1+a^2}-\frac{a^2}{1+a^2}+\frac{1+b^2}{1+b^2}-\frac{b^2}{1+b^2}+\frac{1+c^2}{1+c^2}-\frac{c^2}{1+c^2}\)

\(=3-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\right)\)

\(\ge3-\left(\frac{a^2}{2a}+\frac{b^2}{2b}+\frac{c^2}{2c}\right)\)

\(=3-\frac{a+b+c}{2}=\frac{3}{2}\)

Dấu \(=\)khi \(a=b=c=1\).