cho tg ABC vẽ hai đường trung trực AH;BK cắt nhau ở M suy ra so sánh MB;MA;MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O x và y khác nhau ở điểm truc nên ta có phuong trình x +y bằng 65% tỉ lệ hành hóa
Lời giải:
$C(2)=a.2^2+b.2+c=4a+2b+c$
$C(-1)=a(-1)^2+b(-1)+c=a-b+c$
$\Rightarrow C(2)+C(-1)=4a+2b+c+(a-b+c)=5a+b+2c=0$
$\Rightarrow C(-1)=-C(2)$
$\Rightarrow C(2)C(-1)=-C(2)^2\leq 0$
Ta có đpcm.
\(x^2+4x-5=0\) ( a = 1 ; b, = 2 ; c = - 5 )
\(\Delta^,=\left(b^,\right)^2-a.c\)
\(=2^2-1.\left(-5\right)\)
\(=9>0\)
pt có 2 no phân biệt :
\(x_1=\dfrac{-b^,+\sqrt{\Delta}}{a}=1\)
\(x_2=\dfrac{-b^,-\sqrt{\Delta}}{a}=-5\)
Vậy pt có no : x = 1
x = - 5
hình nháp thôi nha bạn :
Xét \(\Delta ABD\) và \(\Delta HBD\) vuông lần lượt tại A và H có :
\(BD:\) cạnh chung
\(\) góc \(ABD=\) góc \(HBD\)
Do đó : \(\Delta ABD=\Delta HBD\left(c.h-g.n\right)\)
\(\Rightarrow AD=HD\)
Xét \(\Delta HDC\) vuông tại H :
\(\Rightarrow DC>HD\) ( quan hệ giữa góc mà cạnh đối diện )
mà \(AD=HD\left(cmt\right)\)
\(\Rightarrow AD< DC\left(đpcm\right)\)