Cho và . Giá trị biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài1
a: Xét ΔABC có BC-AB<AC<BC+AB
=>4-1<AC<4+1
=>3<AC<5
mà AC nguyên
nên AC=4(cm)
b: Xét ΔABC có CB=CA(=4cm)
nên ΔCAB cân tại C
c: Xét ΔCAB có AB<BC=AC
và \(\widehat{C};\widehat{A};\widehat{B}\) lần lượt là góc đối diện của các cạnh AB,BC,AC
nên \(\widehat{C}< \widehat{A}=\widehat{B}\)
=>góc C là góc nhỏ nhất
Câu 20:
Gọi số cây lớp 6;7;8 trồng lần lượt là a(cây),b(cây),c(cây)
(Điều kiện: \(a\in Z^+;b\in Z^+;c\in Z^+\))
Số cây của ba lớp tỉ lệ với 2;3;5 nên \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}\)
Lớp 8 trồng nhiều hơn lớp 6 là 9 cây nên c-a=9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{c-a}{5-2}=\dfrac{9}{3}=3\)
=>\(a=3\cdot2=6;b=3\cdot3=9;c=5\cdot3=15\)
vậy: số cây lớp 6;7;8 trồng lần lượt là 6 cây; 9 cây và 15 cây
Lời giải:
Vì $y^2\geq 0$ với mọi $y$ nên $14(x-2023)^2=26-3y^2\leq 26$
$\Rightarrow (x-2023)^2\leq \frac{26}{14}< 2$
Mà $(x-2023)^2$ là scp nên $(x-2023)^2=0$ hoặc $(x-2023)^2=1$
Nếu $(x-2023)^2=0$ thì: $26-3y^2=0\Rightarrow y^2=\frac{26}{3}$ (vô lý - loại)
Nếu $(x-2023)^2=1$ thì:
$x-2023=\pm 1\Rightarrow x=2022$ hoặc $x=2024$
$26-3y^2=14\Rightarrow 3y^2=12\Rightarrow y^2=4\Rightarrow y=\pm 2$
Vậy $(x,y)=(2022, 2), (2022, -2), (2024,2), (2024,-2)$
Đặt \(\widehat{A}=a;\widehat{B}=b;\widehat{C}=c\)
Số đo góc A bằng 6 lần số đo góc B bằng 3 lần số đo góc C
=>a=6b=3c
=>\(\dfrac{a}{6}=\dfrac{6b}{6}=\dfrac{3c}{6}\)
=>\(\dfrac{a}{6}=\dfrac{b}{1}=\dfrac{c}{2}\)
Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(a+b+c=180^0\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{1}=\dfrac{c}{2}=\dfrac{a+b+c}{6+1+2}=\dfrac{180}{9}=20\)
=>\(a=20\cdot6=120;b=1\cdot20=20;c=2\cdot20=40\)
Vậy: \(\widehat{A}=120^0;\widehat{B}=20^0;\widehat{C}=40^0\)
Lời giải:
Ta có: $\widehat{A}+\widehat{B}+\widehat{C}=180^0$ (tổng 3 góc trong 1 tam giác)
Áp dụng TCDTSBN:
$\widehat{A}=6\widehat{B}=3\widehat{C}=\frac{\widehat{A}}{1}=\frac{\widehat{B}}{\frac{1}{6}}=\frac{\widehat{C}}{\frac{1}{3}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{1+\frac{1}{6}+\frac{1}{3}}=\frac{180^0}{\frac{3}{2}}=120^0$
$\Rightarrow \widehat{A}=120^0; \widehat{B}=120^0:6=20^0; \widehat{C}=120^0:3=40^0$
\(\dfrac{x}{2}=\dfrac{y}{3}=1\)
=>\(x=2\cdot1=2;y=3\cdot1=3\)
x+y=2+3=5
Đề bài của em đang bị lỗi công thức, em gõ đề bài lại bằng cách sử dụng chỗ gõ công thức có biểu tượng Σ trên góc trái màn hình em nhé.