Câu 8 (3,0 điểm) Cho ∆ABC nhọn (AB < AC) nội tiếp (O). Các đường cao BE, CF cắt nhau tại H. Gọi D là giao điểm của AH và BC. Tiếp tuyến tại A của đường tròn (O) cắt BC tại S.
a) Chứng minh tứ giác AEHF nội tiếp và EAH = EBC
b) Đường kính AK của đường tròn (O) cắt EF tại M, cắt BC tại N. Tiếp tuyến tại K của đường tròn (O) cắt tia AH tại Q. Chứng minh HM // QN.
c) Gọi I là trung điểm của BC. Đường tròn đường kính AH cắt AI tại P (P khác A). Chứng minh SA = SP
Mình tóm tắt thôi nhé, tại bài này cũng khá dài.
a) \(\widehat{AEH}+\widehat{AFH}=90^o+90^o=180^o\) nên tứ giác AEHF nội tiếp
Hơn nữa \(\widehat{ADB}=\widehat{AEB}=90^o\) nên tứ giác AEDB nội tiếp \(\Rightarrow\widehat{DAE}=\widehat{DBE}\) hay \(\widehat{EAH}=\widehat{EBC}\)
b) Dễ chứng minh được: \(\Delta AFH\sim\Delta ADB\Rightarrow AF.AB=AH.AD\)
Mặt khác, \(\widehat{SAF}=\widehat{ACB}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung đó) và \(\widehat{ACB}=\widehat{AFE}\) (\(\Delta AEF\sim\Delta ABC\)) nên \(\widehat{SAF}=\widehat{AFE}\) \(\Rightarrow\) SA//EF. Mà \(SA\perp AO\) nên \(EF\perp AO\).
Do đó, dễ chứng minh rằng \(\Delta AFM\sim\Delta AKB\left(g.g\right)\Rightarrow AF.AB=AM.AK\)
Từ đó suy ra \(AH.AD=AM.AK\Rightarrow\Delta AHM\sim\Delta AKD\)
Lại có tứ giác QDNK nội tiếp ( \(\widehat{QDN}=\widehat{QKN}=90^o\)) nên \(\widehat{AQN}=\widehat{AKD}\) \(\Rightarrow\Delta AKD\sim\Delta AQN\)
Do đó \(\Delta AHM\sim\Delta AQN\) \(\Rightarrow\widehat{AHM}=\widehat{AQN}\) \(\Rightarrow\) QN//HM (2 góc đồng vị bằng nhau)
c) Gọi J là tâm đường tròn (AH)
Dễ chứng minh được \(\Delta FAH\sim\Delta FCB\) \(\Rightarrow\Delta FJA\sim\Delta FIC\)
\(\Rightarrow\widehat{JFA}=\widehat{IFC}\)
Mà \(\widehat{JFA}+\widehat{JFC}=90^o\) nên \(\widehat{IFC}+\widehat{JFC}=90^o\) hay \(\widehat{JFI}=90^o\)
\(\Rightarrow\) IF là tiếp tuyến của (J) tại F.
Tương tự, IE là tiếp tuyến của (J) tại E, do đó \(IJ\perp EF\) Mà EF//SA (cmt) \(\Rightarrow SA\perp IJ\)
Khi đó tam giác ASI có các đường cao AD, IJ cắt nhau tại J nên J là trực tâm tam giác ASI \(\Rightarrow SJ\perp AI\) hay \(SJ\perp AP\)
Lại có \(JA=JP\) nên JS là trung trực của AP \(\Rightarrow SA=SP\) (đpcm)