Cho tam giác ABC vuông tại A, đường cao AH. AB = 3cm, BC = 5cm. Gọi M, N lần lượt là trung điểm của BC và BH. Xác định vị trí tương đối của điểm M, N, H đối với đường tròn đường kính AC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
18 tháng 9 2021
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel :
\(\text{∑}\frac{a}{b+c}=\text{∑}\frac{a^2}{ab+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)(1)
Bạn chứng minh bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(2)
Từ (1) và (2) \(\Rightarrow\text{∑}\frac{a}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\left(đpcm\right)\)
Dấu "=" xảy ra <=> a = b = c
DB
0
18 tháng 9 2021
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)
dấu "=" xảy ra khi và chỉ khi \(x=1\)
\(MIN=2\)
DG
2