P=\(\frac{x+16}{\sqrt{x}+3}\) chứng minh P>\(\sqrt{P}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(p\)là số nguyên tổ nên tổng các ước nguyên dương của \(p^4\)là \(1+p+p^2+p^3+p^4\).
Đặt \(p^4+p^3+p^2+p+1=n^2\)
\(\Leftrightarrow4p^4+4p^3+4p^2+4p+1=4n^2\)
Ta có:
\(4p^4+4p^3+4p^2+4p+4>4p^4+4p^3+p^2=\left(2p^2+p\right)^2\)
\(4p^4+4p^3+4p^2+4p+4< 4p^4+4p^3+9p^2+4p+4=\left(2p^2+p+2\right)^2\)
Suy ra \(\left(2p^2+p\right)^2< 4n^2< \left(2p^2+p+2\right)^2\)
\(\Rightarrow\left(2n\right)^2=\left(2p^2+p+1\right)^2=4p^4+4p^3+5p^2+2p+1\)
\(\Rightarrow p^2-2p-3=0\)
\(\Leftrightarrow\left(p+1\right)\left(p-3\right)=0\)
\(\Rightarrow p=3\)thỏa mãn.
Vậy \(p=3\).
Ta có: \(4ab\le2a^2+2b^2\)
=> \(\sqrt{2a^2+7b^2+16ab}\le\sqrt{4a^2+9b^2+12ab}=\sqrt{\left(2a+3b\right)^2}=2a+3b\)
=> \(\frac{a^2}{\sqrt{2a^2+7b^2+16ab}}\ge\frac{a^2}{2a+3b}\)
Chứng minh tương tự
=> \(T\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)
Áp dụng bđt bunhia dạng phân thức
=> \(T\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=1\)
=> \(MinT=1\)xảy ra khi a=b=c=5/3
Câu 1:
\(B=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4\sqrt{x}}{4-x}-\frac{2}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}-4\sqrt{x}-2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
\(P=A.B=\left(\frac{\sqrt{x}-2}{\sqrt{x}+2}\right)^2\)
\(P< P^2\Leftrightarrow P\left(1-P\right)< 0\Leftrightarrow P>1\)(vì \(P>0\))
\(\left(\frac{\sqrt{x}-2}{\sqrt{x}+2}\right)^2>1\Leftrightarrow\orbr{\begin{cases}\frac{\sqrt{x}-2}{\sqrt{x}+2}>1\\\frac{\sqrt{x}-2}{\sqrt{x}+2}< -1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2>\sqrt{x}+2\\\sqrt{x}-2< -\sqrt{x}-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}0\sqrt{x}>4\left(vn\right)\\\sqrt{x}< 0\left(vn\right)\end{cases}}\)
Vậy không có giá trị nào của \(x\)thỏa mãn.
điều kiện \(x\ge0;P\ge0\)
Để chứng minh \(p>\sqrt{P}\)luôn đúng ta cần chứng minh P>1 luôn đúng.
Giả sử P>1 \(\Leftrightarrow\)\(\frac{x+16}{\sqrt{x}+3}>1\)\(\Leftrightarrow\)\(x+16>\sqrt{x}+3\)\(\Leftrightarrow\)\(x-\sqrt{x}+13>0\)
\(\Leftrightarrow\)\(x+\sqrt{x}+\frac{1}{4}+12,75>0\)\(\Leftrightarrow\)\(\left(\sqrt{x}+\frac{1}{2}\right)^2+12,75>0\)luôn luôn đúng
như vậy P luôn luôn >1 là đúng\(\Leftrightarrow\)\(p>\sqrt{P}\)luôn đúng (đpcm)