K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2023

a. Tính góc ADB và góc BDC: Gọi góc ADB = x, góc BDC = y. Ta có thể sử dụng các quy tắc góc chắn cung và góc nội tiếp để tính góc như sau:

  • Góc BAC = 90 độ (do tam giác ABC vuông tại A)
  • Góc B = 60 độ (theo đề bài)
  • Góc ABC = 180 - Góc BAC - Góc B = 30 độ (tổng các góc của tam giác ABC bằng 180 độ)
  • Góc ABD = Góc ABC (do AB // CD theo định lý Thales)
  • Góc DAB = 180 - Góc ADB - Góc ABD = 180 - x - 30
  • Góc BCD = Góc BAC (do CD là tiếp tuyến của đường tròn ngoại tiếp tam giác BDC)
  • Góc BDC = 180 - Góc BCD - Góc B = 90 - Góc BAC/2 = 45 độ (do tam giác BCD cân tại B)

b. So sánh các cạnh của tam giác ABD: Để so sánh các cạnh của tam giác ABD, ta cần tính độ dài các cạnh. Theo định lý Pythagoras trong tam giác vuông ABC, ta có:

  • AB^2 = AC^2 + BC^2 = a^2 + b^2
  • BC = a
  • AC = b Vậy AB = sqrt(a^2 + b^2). Tương tự, ta có CD = b và BD = c*sqrt(3)/2 (tính theo phương pháp trong câu trả lời trước). Do đó, ta có thể so sánh các cạnh của tam giác ABD theo thứ tự tăng dần: CD < AB < BD.

c. So sánh các góc của tam giác BDC: Trong tam giác BDC, ta đã tính được góc BDC = 45 độ (như ở câu a). Do tam giác BDC cân tại B, nên góc CBD cũng bằng 45 độ. Vì vậy, hai góc của tam giác BDC bằng nhau và bằng 45 độ.

17 tháng 2 2023

a. Tính góc ADB và góc BDC: Gọi góc ADB = x, góc BDC = y. Ta có thể sử dụng các quy tắc góc chắn cung và góc nội tiếp để tính góc như sau:

  • Góc BAC = 90 độ (do tam giác ABC vuông tại A)
  • Góc B = 60 độ (theo đề bài)
  • Góc ABC = 180 - Góc BAC - Góc B = 30 độ (tổng các góc của tam giác ABC bằng 180 độ)
  • Góc ABD = Góc ABC (do AB // CD theo định lý Thales)
  • Góc DAB = 180 - Góc ADB - Góc ABD = 180 - x - 30
  • Góc BCD = Góc BAC (do CD là tiếp tuyến của đường tròn ngoại tiếp tam giác BDC)
  • Góc BDC = 180 - Góc BCD - Góc B = 90 - Góc BAC/2 = 45 độ (do tam giác BCD cân tại B)

b. So sánh các cạnh của tam giác ABD: Để so sánh các cạnh của tam giác ABD, ta cần tính độ dài các cạnh. Theo định lý Pythagoras trong tam giác vuông ABC, ta có:

  • AB^2 = AC^2 + BC^2 = a^2 + b^2
  • BC = a
  • AC = b Vậy AB = sqrt(a^2 + b^2). Tương tự, ta có CD = b và BD = c*sqrt(3)/2 (tính theo phương pháp trong câu trả lời trước). Do đó, ta có thể so sánh các cạnh của tam giác ABD theo thứ tự tăng dần: CD < AB < BD.

c. So sánh các góc của tam giác BDC: Trong tam giác BDC, ta đã tính được góc BDC = 45 độ (như ở câu a). Do tam giác BDC cân tại B, nên góc CBD cũng bằng 45 độ. Vì vậy, hai góc của tam giác BDC bằng nhau và bằng 45 độ.

15 tháng 2 2023

Theo đề ra, ta có:

\(\dfrac{x}{9}=\dfrac{y}{10}\Rightarrow\dfrac{x^2}{9^2}=\dfrac{y^2}{10^2}\Rightarrow\dfrac{x^2}{81}=\dfrac{y^2}{100}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{81}=\dfrac{y^2}{100}=\dfrac{x^2+y^2}{81+100}=\dfrac{181}{181}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{81}=1\Rightarrow x=\pm9\\\dfrac{y^2}{100}=1\Rightarrow y=\pm10\end{matrix}\right.\)

16 tháng 2 2023

KL này chưa ổn: VD chia ra: TH1 : x=-9; y=-10. TH2: x=9;y=10

Chứ KL như em thì có thể có cặp nghiệm (-9;10) hoặc (9;-10) như thế không thoả BT để bài

16 tháng 2 2023

Càng nhiều người thì thời gian hoàn thành công việc sẽ giảm nên số người tỉ lệ nghịch với thời gian hoàn thành

Hoàn thành sớm hơn 8 ngày nghĩa là hoàn thành trong:

\(32-8=24\) ngày

Gọi số người để hoàn thành công việc trong 24 ngày là \(a\left(a\inℕ^∗\right)\)

\(\Rightarrow\) Đội cần thêm số người là \(a-15\)

Theo đề ra, ta có:

\(\dfrac{a}{15}=\dfrac{32}{24}\Rightarrow a=\dfrac{15.32}{24}=20\)

\(\Rightarrow a-15=20-15=5\)

Vậy đội đó cần thêm 5 người để hoàn thành công việc trong 24 ngày.

 

 

15 tháng 2 2023

Đề phải là \(2x+3y-z=50\) chứ?

Theo đề ra, ta có:

\(3\left(x-1\right)=2\left(y-2\right)\Rightarrow\dfrac{x-1}{2}=\dfrac{y-2}{3}\)

\(4\left(y-2\right)=3\left(z-3\right)\Rightarrow\dfrac{y-2}{3}=\dfrac{z-3}{4}\)

\(\Rightarrow\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{3}\)

\(\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{3}=\dfrac{2x-2+3y-6-z+3}{4+9+\left(-3\right)}=\dfrac{50-5}{10}=\dfrac{45}{10}=\dfrac{9}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{9}{2}\Rightarrow x=10\\\dfrac{y-2}{3}=\dfrac{9}{2}\Rightarrow y=\dfrac{31}{2}\\\dfrac{z-3}{4}=\dfrac{9}{2}\Rightarrow z=21\end{matrix}\right.\)

15 tháng 2 2023

mn

giúp em nhanh vs ạ