K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
27 tháng 1 2021

Gọi số xe to hoặc số xe nhỏ lần lượt là \(a,b\)(xe) (\(a,b\inℕ^∗\)

Theo bài ra, ta có hệ phương trình: 

\(\hept{\begin{cases}a=b-2\\\frac{180}{a}-\frac{180}{b}=15\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b-2\\\frac{180}{b-2}-\frac{180}{b}=15\end{cases}\Leftrightarrow\hept{\begin{cases}a=b-2\\\frac{360}{b\left(b-2\right)}=15\end{cases}}}\)

\(\frac{360}{b\left(b-2\right)}=15\Rightarrow15b\left(b-2\right)=360\Leftrightarrow\orbr{\begin{cases}b=6\left(tm\right)\\b=-4\left(l\right)\end{cases}}\)

Suy ra \(\hept{\begin{cases}a=4\\b=6\end{cases}}\)

27 tháng 9

số xe to là 4

số xe nhỏ là 6

26 tháng 9

    Giải Phương trình bậc nhất một ẩn, Olm hướng dẫn các em làm từng bước cụ thể như sau:

Bước 1: Thu gọn biểu thức nếu có thể theo quy tắc thực hiện phép tính.

Bước 2: Chuyển vế đổi dấu (chuyển tất cả các thành phần có chứa ẩn về một vế, vế kia là hằng số)

Bước 3: Tìm được ẩn theo theo quy tắc tìm thành phần chưa biết của phép tính.

Bước 4 kết luận.

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>\(\widehat{ACB}=90^0\)

Xét (O) có \(\widehat{ADC}\) là góc nội tiếp chắn cung AC

nên \(\widehat{ADC}=\dfrac{\widehat{AOC}}{2}=\dfrac{90^0}{2}=45^0\)

b: M là điểm chia cung AC thành hai cung nhỏ bằng nhau

=>\(sđ\stackrel\frown{MA}=\dfrac{sđ\stackrel\frown{AC}}{2}=\dfrac{90^0}{2}=45^0\)

Xét (O) có \(\widehat{ADM}\) là góc nội tiếp chắn cung AM

nên \(\widehat{ADM}=\dfrac{1}{2}\cdot sđ\stackrel\frown{MA}=\dfrac{1}{2}\cdot45^0=22,5^0\)

N chia cung BC thành hai cung nhỏ bằng nhau

=>\(sđ\stackrel\frown{BN}=\dfrac{sđ\stackrel\frown{BC}}{2}=45^0\)

Xét (O) có

\(\widehat{NCB}\) là góc nội tiếp chắn cung NB

=>\(\widehat{NCB}=\dfrac{sđ\stackrel\frown{NB}}{2}=\dfrac{45^0}{2}=22,5^0\)

23 tháng 9

Trong "Principia Mathematica" của Bertrand Russell và Alfred North Whitehead, việc chứng minh 1 + 1 = 2 mất khoảng 362 trang. Đây là một phần của nỗ lực xây dựng toán học dựa trên logic hình thức. Chứng minh này phản ánh sự phức tạp của các định nghĩa và tiên đề trong lý thuyết tập hợp và số học. Nếu bạn cần thêm thông tin về nội dung cụ thể, hãy cho tôi biết! Chứng minh 1 + 1 = 2 trong "Principia Mathematica" được xem là khó khăn vì nó yêu cầu hiểu biết sâu sắc về logic hình thức và các định nghĩa phức tạp. Mặc dù kết quả cuối cùng có vẻ đơn giản, quá trình chứng minh đòi hỏi nhiều bước logic và khái niệm toán học. Nếu bạn không quen với lý thuyết này, nó có thể khá trừu tượng và khó tiếp cận.

22 tháng 10

nó ko liên quan đến câu hỏi này

 

27 tháng 8

Bây giờ lớp 9 học đạo hàm rồi hả em?

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra AO là đường trung trực của BC

b: Xét (O) có

ΔCBD nội tiếp

CD là đường kính

Do đó: ΔCBD vuông tại B

=>CB\(\perp\)BD

mà AO\(\perp\)BC

nên AO//BD

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

Xét ΔABC vuông tại A có \(tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\)

nên \(\widehat{C}\simeq37^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-37^0=53^0\)

b: Xét ΔBDC vuông tại B có BA là đường cao

nên \(BA^2=AD\cdot AC\)

=>\(AD=\dfrac{3^2}{4}=\dfrac{9}{4}=2,25\left(cm\right)\)

ΔABD vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD=\sqrt{2,25^2+3^2}=3,75\left(cm\right)\)

Xét ΔBAD vuông tại A có AF là đường cao

nên \(BF\cdot BD=BA^2\left(1\right)\)

Xét ΔBAC vuông tại A có AE là đường cao

nên \(BE\cdot BC=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BF\cdot BD=BE\cdot BC\)

Xét tứ giác AEBF có \(\widehat{AEB}=\widehat{AFB}=\widehat{EBF}=90^0\)

nên AEBF là hình chữ nhật

ΔABC vuông tại A có AE là đường cao

nên \(\left\{{}\begin{matrix}AE\cdot BC=AB\cdot AC\\BE\cdot BC=BA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AE=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\\BE=\dfrac{3^2}{5}=1,8\left(cm\right)\end{matrix}\right.\)

AEBF là hình chữ nhật

=>\(S_{AEBF}=AE\cdot BE=2,4\cdot1,8=4,32\left(cm^2\right)\)

Gọi thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là x(giờ) và y(giờ)

(Điều kiện: x>6; y>0)

Người thứ hai hoàn thành công việc nhanh hơn người thứ nhất là 6 giờ nên x-y=6(1)

Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai người làm được: \(\dfrac{1}{4}\)(công việc)

Do đó, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\left(2\right)\)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x-y=6\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+6\\\dfrac{1}{y+6}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{y+y+6}{y^2+6y}=\dfrac{1}{4}\\x=y+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2+6y=4\left(2y+6\right)=8y+24\\x=y+6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y^2+6y-8y-24=0\\x=y+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2-2y-24=0\\x=y+6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(y-6\right)\left(y+4\right)=0\\x=y+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=6\left(nhận\right)\\y=-4\left(loại\right)\end{matrix}\right.\\x=y+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=6+6=12\end{matrix}\right.\left(nhận\right)\)

Vậy: thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là 12(giờ) và 6(giờ)