K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\)

\(=3x^2+3y^2-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=3x^2+3y^2-2\left(x^2-xy+y^2\right)\)

\(=3x^2+3y^2-2x^2+2xy-2y^2\)

\(=x^2+2xy+y^2=\left(x+y\right)^2=2^2=4\)

17 tháng 10 2016

sai rồi bạn . Mình nhập vào nó hiện lên sai

18 tháng 3 2016

a)y2 = 7 => y = \(\sqrt{7}hoặc-\sqrt{7}\)

Nếu y = \(\sqrt{7}\) thì :

x2y3 = 5 . y.y

x2y3 = 5.7.\(\sqrt{7}\) = 35\(\sqrt{7}\)

Nếu y = -\(\sqrt{7}\)  thì :

x2y3 = 5.7. (-\(\sqrt{7}\)) = -35\(\sqrt{7}\)

b) x2y= 5.7 = 35

x6y6 = (x2y2)3 = 353 = 42875

c) làm tương tự câu (a).  Chia x làm 2 trường hợp bằng căng 5 hoặc cặng 5 rồi thế vô tính nhé bạn!

12 tháng 7 2016

1./ \(x+y=3\Rightarrow\left(x+y\right)^3=27\Rightarrow x^3+y^3+3xy\left(x+y\right)=27\Rightarrow x^3+y^3+3\cdot2\cdot3=27.\)

\(\Rightarrow x^3+y^3=9\)

2./ \(\left(x+3\right)\left(x^2-3x+3^2\right)-x^3-2x-4=0\)

\(\Leftrightarrow x^3+27-x^3-2x-4=0\Leftrightarrow2x=23\Leftrightarrow x=\frac{23}{2}\)

12 tháng 7 2016

1/ \(x+y=3\)

\(\Rightarrow\left(x+y\right)^2=9\)

\(\Rightarrow x^2+2xy+y^2=9\)

\(\Rightarrow x^2+4+y^2=9\)

\(\Rightarrow x^2+y^2=5\)

\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.1=3\)

23 tháng 7 2018

2) b)

Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\) 

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)

\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)

\(ab+bc+ac=-60:2=-30\)

23 tháng 7 2018

a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)

                           = (x+y)^3

                           = 1^3 =1

b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac

    9^2 = 141 +2(ab+bc+ac)

    -60 = 2(ab+bc+ac)

    ab+ac+bc=-30

Vậy M=-30

c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)

       = x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3

       = x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3

       = 0

Vậy N=0 .Chúc bạn học tốt.

       

14 tháng 8 2020

Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),

a) Ta có : \(x-y=3\Rightarrow x=3+y\).

Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)

\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)

\(\ge\left|3-y+y+1\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

b) Ta có : \(x-y=2\Rightarrow x=2+y\)

Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)

\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)

\(\ge\left|-2y-5+2y+1\right|=4\)

Các câu khác tương tự nhé em !

14 tháng 8 2020

Làm nốt câu c

                                                  Bài giải

c, Ta có : 

\(D=\left|2x+3\right|+\left|y+2\right|+2\ge\left|2x+3+y+2\right|+2=\left|3+3+2\right|+2=8+2=10\)

Dấu " = " xảy ra khi \(2x+y=3\)

Vậy \(\text{​​Khi }2x+y=3\text{​​ }Min_D=10\)

NV
12 tháng 9 2021

Đề bài sai nhé, từ giả thiết chỉ xác định được \(x+y=0\Rightarrow y=-x\)

\(\Rightarrow A=4x^2-x^2+x^2+15=4x^2+15\) ko rút gọn được

12 tháng 9 2021

Nguyễn Việt Lâm Giáo viên, bn có thể sửa đề bài cho mk được không ạ??? Cám ơn bn nhiều lắm lắm!!!

Phần 1);2) dễ nha nên bạn tự thay vào tính nha nên mk làm phần 3)

C=(a.a+2.a.b+b.b)

C=(a2+2ab +b2)

C=(a.(a+2b)+b2)

Chúc bn học tốt