Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=−x3−3x2+9x−1. Mệnh đề nào sau đây đúng?
Cho hàm số y=f(x) liên tục trên R và có bảng xét dấu của f′(x) như sau:
Số điểm cực đại của hàm số đã cho là
Cho hàm số y=f(x) có đồ thị là đường cong như hình vẽ:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=x+x1 trên đoạn [23;3] lần lượt là
Cho hàm số y=f(x) có x→+∞limf(x)=2, x→−∞limf(x)=+∞. Khẳng định nào sau đây đúng?
Đường cong trong hình vẽ là đồ thị của hàm số nào sau đây?
Điểm nào sau đây thuộc đồ thị của hàm số y=x4−3x2−5?
Định luật vạn vật hấp dẫn của Newton được cho bởi công thức F=Gr2m1.m2. Trong đó F là lực hấp dẫn giữa hai vật thể bất kì, G là hằng số hấp dẫn, m1,m2 là khối lượng các vật, r là khoảng cách giữa chúng. Đồ thị của hàm số cho bởi công thức này có tiệm cận đứng là r=0, điều này có nghĩa là khi r dần về 0 thì lực hấp dẫn sẽ tiến đến
Với giá trị nào dưới đây của m thì hàm số y=cos2x+mx đồng biến trên R?
Số giá trị nguyên dương của tham số m để đồ thị hàm số y=x2−8x+mx−1 có 3 đường tiệm cận là
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số có giá trị cực đại bằng 3. |
|
b) Hàm số có hai điểm cực trị. |
|
c) Hàm số có giá trị lớn nhất bằng 1, nhỏ nhất bằng −31. |
|
d) Đồ thị hàm số không cắt trục hoành. |
|
Cho hàm số y=f(x) có bảng biến thiên như sau
(Nhấp vào ô màu vàng để chọn đúng / sai)
a) Đồ thị hàm số có đường tiệm cận đứng là x=2. |
|
b) Đồ thị hàm số có đường tiệm cận ngang là x=−1. |
|
c) Tổng số đường tiệm cận của đồ thị hàm số đã cho là 2. |
|
d) Hàm số đồng biến trên R. |
|
Ông An muốn xây một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Ba kích thước của bể được mô tả như hình vẽ dưới (a (m) >0; c (m) >0).
Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất (Biết độ dày thành bể và đáy bể không đáng kể).
a) Diện tích các mặt cần xây là S=2a2+6ac m2. |
|
b) 2a2c=280. |
|
c) Diện tích các mặt cần xây nhỏ nhất là 216 m2. |
|
d) Chi phí thấp nhất để xây dựng bể đó là 108 triệu đồng. |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Giá trị nhỏ nhất của hàm số trên [−2,5;1,5] là −2. |
|
b) Hàm số xác định và liên tục trên R. |
|
c) Điểm cực tiểu của đồ thị hàm số đã cho là (3;−2). |
|
d) Với −1<m<1 thì phương trình f(x)=m có 4 nghiệm phân biệt. |
|
Tại một công ty sản xuất đồ chơi an toàn cho trẻ em, công ty phải chi 40000 USD để thiết lập dây chuyền sản xuất ban đầu. Sau đó, cứ sản xuất được một sản phẩm đồ chơi A, công ty phải trả 6 USD cho nguyên liệu ban đầu và nhân công. Gọi x, (x≥1) là số đồ chơi A mà công ty đã sản xuất và P(x) (đơn vị USD) là tổng số tiền bao gồm cả chi phí ban đầu mà công ty phải chi trả khi sản xuất x đồ chơi A. Người ta xác định chi phí trung bình cho mỗi sản phẩm đồ chơi A là F(x)=xP(x). Xem y=F(x) là hàm số theo x xác định trên nửa khoảng [1;+∞) có phương trình đường tiệm cận ngang là y=b. Tính b.
Trả lời:
Biết thể tích V (đơn vị: centimét khối) của 1 kg nước tại nhiệt độ T, (0∘C ≤T≤30∘C) được tính bởi công thức: V(T)=999,87−0,06426T+0,0085043T2−0,0000679T3. Thể tích V(T) thấp nhất ở nhiệt độ bao nhiêu? (làm tròn đến hàng đơn vị của đơn vị ∘C)
Trả lời:
Theo thống kê tại một nhà máy Z, nếu áp dụng tuần làm việc 40 giờ thì mỗi tuần có 100 công nhân đi làm và mỗi công nhân làm được 120 sản phẩm trong một giờ. Nếu tăng thời gian làm việc thêm 2 giờ mỗi tuần thì sẽ có 1 công nhân nghỉ việc và năng suất lao động giảm 5 sản phẩm/1 công nhân/1 giờ. Ngoài ra, số phế phẩm mỗi tuần ước tính là P(x)=495x2+120x, với x là thời gian làm việc trong một tuần (đơn vị: giờ). Nhà máy cần áp dụng thời gian làm việc mỗi tuần mấy giờ để số lượng sản phẩm thu được mỗi tuần là lớn nhất?
Trả lời: giờ.
Cho một tấm nhôm hình vuông có cạnh 24 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gấp tấm nhôm lại như hình vẽ dưới đây để được một khối hộp chữ nhật không nắp.
Tìm x sao cho thể tích khối hộp lớn nhất.
Trả lời:
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ sau:
Phương trình f′[5−3f(x)]=0 có bao nhiêu nghiệm thực?
Trả lời:
Cho hàm số y=f′(x) có đồ thị như hình vẽ.
Hàm số y=f(x)−21(x−1)2 nghịch biến trên khoảng (−∞;a). Tìm giá trị nguyên lớn nhất của a.
Trả lời: