Hộ mình bài này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại B
=>\(AB^2+BC^2=AC^2\)
=>\(AC=\sqrt{12^2+9^2}=15\left(cm\right)\)
b: Xét ΔHBA vuông tại H và ΔHCB vuông tại H có
\(\widehat{HBA}=\widehat{HCB}\left(=90^0-\widehat{HAB}\right)\)
Do đó: ΔHBA~ΔHCB
=>\(\dfrac{HB}{HC}=\dfrac{HA}{HB}\)
=>\(HB^2=HA\cdot HC\)
c: Đề sai rồi bạn
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
b: Ta có: \(\widehat{HAD}+\widehat{BDA}=90^0\)(ΔHAD vuông tại H)
\(\widehat{CAD}+\widehat{BAD}=\widehat{BAC}=90^0\)
mà \(\widehat{BDA}=\widehat{BAD}\)(ΔBAD cân tại B)
nên \(\widehat{HAD}=\widehat{CAD}\)
=>AD là phân giác của góc HAC
Xét ΔAHC có AD là phân giác
nên \(\dfrac{DH}{DC}=\dfrac{AH}{AC}\)
=>\(DH\cdot AC=AH\cdot DC\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA~ΔABC
b: Xét ΔBAM vuông tại A và ΔBHN vuông tại H có
\(\widehat{ABM}=\widehat{HBN}\)
Do đó: ΔBAM~ΔBHN
=>\(\dfrac{AB}{HB}=\dfrac{AM}{HN}\)
=>\(AB\cdot HN=AM\cdot HB\)
ĐKXĐ: x<>-2
\(x^2+\dfrac{4x^2}{\left(x+2\right)^2}=5\)
=>\(\dfrac{\left(x^2+2x\right)^2+4x^2}{\left(x+2\right)^2}=5\)
=>\(x^4+4x^3+4x^2+4x^2=5\left(x^2+4x+4\right)\)
=>\(x^4+4x^3+8x^2-5x^2-20x-20=0\)
=>\(x^4+4x^3+3x^2-20x-20=0\)
=>\(\left(x-2\right)\left(x+1\right)\left(x^2+5x+10\right)=0\)
mà \(x^2+5x+10>0\forall x\)
nên (x-2)(x+1)=0
=>\(\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
a: Xét ΔABC vuông tại A và ΔMBE vuông tại M có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔMBE
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
M là trung điểm của BC
=>\(MB=MC=\dfrac{BC}{2}=15\left(cm\right)\)
ΔBAC~ΔBME
=>\(\dfrac{BA}{BM}=\dfrac{BC}{BE}=\dfrac{AC}{ME}\)
=>\(\dfrac{18}{15}=\dfrac{30}{BE}=\dfrac{24}{ME}\)
=>\(\dfrac{30}{BE}=\dfrac{24}{ME}=\dfrac{6}{5}\)
=>BE=25(cm); ME=20(cm)
c: Xét ΔHMC vuông tại M và ΔHAE vuông tại A có
\(\widehat{MHC}=\widehat{AHE}\)(hai góc đối đỉnh)
Do đó: ΔHMC~ΔHAE
=>\(\dfrac{HM}{HA}=\dfrac{HC}{HE}\)
=>\(HM\cdot HE=HC\cdot HA\)
d: Xét ΔCEB có
CA,EM là các đường cao
CA cắt EM tại H
Do đó: H là trực tâm của ΔCEB
=>BH\(\perp\)CE tại N
Xét ΔCNB vuông tại N và ΔCME vuông tại M có
\(\widehat{NCB}\) chung
Do đó: ΔCNB~ΔCME
=>\(\dfrac{CN}{CM}=\dfrac{CB}{CE}\)
=>\(\dfrac{CN}{CB}=\dfrac{CM}{CE}\)
Xét ΔCNM và ΔCBE có
\(\dfrac{CN}{CB}=\dfrac{CM}{CE}\)
\(\widehat{NCM}\) chung
Do đó: ΔCNM~ΔCBE
=>\(\widehat{CMN}=\widehat{CEB}\)
a) Sửa đề: Chứng minh ∆ABC ∽ ∆MBE
Xét hai tam giác vuông: ∆ABC và ∆MBE có:
∠B chung
⇒ ∆ABC ∽ ∆MBE (g-g)
b) ∆ABC vuông tại A (gt)
⇒ BC² = AB² + AC² (Pythagore)
= 18² + 24²
= 900
⇒ BC = 30 (cm)
Do M là trung điểm của BC (gt)
⇒ BE = BC : 2 = 30 : 2 = 15 (cm)
Do ∆ABC ∽ ∆MBE (cmt)
⇒ AB/MB = AC/EM
⇒ 18/15 = 24/EM
⇒ EM = 15 . 24 : 18 = 20 (cm)
c) Xét hai tam giác vuông: ∆HMC và ∆HAE có:
∠MHC = ∠AHE (đối đỉnh)
⇒ ∆HMC ∽ ∆HAE (g-g)
⇒ HM/HA = HC/HE
⇒ HM.HE = HA.HC
a: Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔEHB~ΔDHC
b: Xét ΔABC có
BD,CE là các đường cao
DB cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại F
Xét ΔBFH vuông tại Fvà ΔBDC vuông tại D có
\(\widehat{FBH}\) chung
Do đó: ΔBFH~ΔBDC
=>\(\dfrac{BF}{BD}=\dfrac{BH}{BC}\)
=>\(BF\cdot BC=BH\cdot BD\)
c: Xét ΔCFH vuông tại F và ΔCEB vuông tại E có
\(\widehat{FCH}\) chung
Do đó: ΔCFH~ΔCEB
=>\(\dfrac{CF}{CE}=\dfrac{CH}{CB}\)
=>\(CF\cdot CB=CH\cdot CE\)
\(BH\cdot BD+CH\cdot CE\)
\(=BF\cdot BC+CF\cdot BC=BC\left(BF+CF\right)=BC^2\)