K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Để chúc mừng năm mới Giáp Thìn 2024, trường THPT X tổ chức một ngày hội đốt pháo. Ban tổ chức sắp xếp 2024 quả pháo thành một vòng tròn và được đánh số lần lượt là 1, 2,... 2024 theo chiều kim đồng hồ. Người ta kích nổ quả pháo số 1. Kể từ đó, các quả pháo nổ theo quy tắc: Theo chiều kim đồng hồ, cứ cách 1 quả pháo là lại nổ một quả pháo (Từ quả pháo số 1, quả pháo số 3 sẽ nổ. Tiếp đó...
Đọc tiếp

 Để chúc mừng năm mới Giáp Thìn 2024, trường THPT X tổ chức một ngày hội đốt pháo. Ban tổ chức sắp xếp 2024 quả pháo thành một vòng tròn và được đánh số lần lượt là 1, 2,... 2024 theo chiều kim đồng hồ. Người ta kích nổ quả pháo số 1. Kể từ đó, các quả pháo nổ theo quy tắc: Theo chiều kim đồng hồ, cứ cách 1 quả pháo là lại nổ một quả pháo (Từ quả pháo số 1, quả pháo số 3 sẽ nổ. Tiếp đó lần lượt là quả số 5, số 7,... Cho đến khi quả pháo số 2023 nổ thì đến lượt quả pháo số 2 nổ (thông qua quả số 2024 còn quả 1 thì đã nổ trước đó) và cứ thế tiếp tục.) 

 a) Chứng minh rằng sau cùng, luôn tồn tại một quả pháo không nổ. Hỏi đó là quả pháo số mấy?

 b) Cũng với câu hỏi trên nhưng thay 2024 quả pháo bằng một số nguyên dương \(n\ge2\) tùy ý.

0
27 tháng 1

Đặt \(x^2=t\left(t\ge0\right)\)

Khi đó pt đã cho trở thành \(t^2-2mt-\left(2m-3\right)=0\) (*)

a) Để pt có 4 nghiệm thì (*) có 2 nghiệm dương phân biệt

 \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\S>0\\P>0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-m\right)^2-\left[-\left(2m-3\right)\right]>0\\2m>0\\3-2m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m-3>0\\m>0\\m< \dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m+3\right)>0\\m>0\\m< \dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\\m>0\\m< \dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow1< m< \dfrac{3}{2}\)

Vậy \(1< m< \dfrac{3}{2}\)

b) Để pt vô nghiệm thì pt (*) vô nghiệm hoặc có 2 nghiệm âm phân biệt.

 TH1: (*) vô nghiệm \(\Leftrightarrow\Delta'< 0\)  \(\Leftrightarrow-3< m< 1\)

 TH2: (*) có 2 nghiệm âm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\S< 0\\P>0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\\m< 0\\m< \dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow m< -3\)

Vậy \(m< -1\) và \(m\ne-3\)
 

 

25 tháng 1

cứ mỗi đỉnh của đa giác thì sẽ tạo ra được 1 tam giác có 2 cạnh là 2 cạnh của đa giác. Mà đa giác có 10 đỉnh nên ta sẽ 10 tam giác thoả yêu câu

25 tháng 1

Gọi chữ số cần lập có dạng �����‾

- Nếu các chữ số không yêu cầu đôi một khác nhau:

 có 4 cách chọn,  có 6 cách chọn; 3 vị trí còn lại đều có 7 cách chọn

 có 4.6.7.7.7=8232 số

- Nếu các chữ số đôi một khác nhau:

+ Nếu �=0 có 6 cách chọn, b có 5 cách chọn, c có 4 cách chọn, d có 3 cách chọn  có 6.5.4.3=360 số

+ Nếu �≠0⇒� có 3 cách chọn, a có 5 cách chọn, b có 5 cách chọn, c có 4 cách chọn, d có 3 cách chọn ⇒900 số

 có 900+360=1260 số

AH
Akai Haruma
Giáo viên
26 tháng 1

Lời giải:

Gọi số tự nhiên có 5 chữ số khác nhau là $\overline{abcde}$

Số cách lập số tự nhiên có 5 chữ số khác nhau từ 2,3,4,5,6 là: $5!=120$ số

Số cách lập số tự nhiên có 5 chữ số khác nhau từ 2,3,4,5,6 mà chia hết cho 5 là:

$4!.1=24$ số (do e chỉ có 1 cách chọn là số 5, 4 số còn lại hoán vị là 4!)

Số cách lập số tự nhiên có 5 chữ số khác nhau mà không chia hết cho 5:

$120-24=96$ (số)

25 tháng 1

Gọi chữ số cần lập có dạng �����‾

- Nếu các chữ số không yêu cầu đôi một khác nhau:

 có 4 cách chọn,  có 6 cách chọn; 3 vị trí còn lại đều có 7 cách chọn

 có 4.6.7.7.7=8232 số

- Nếu các chữ số đôi một khác nhau:

+ Nếu �=0 có 6 cách chọn, b có 5 cách chọn, c có 4 cách chọn, d có 3 cách chọn  có 6.5.4.3=360 số

+ Nếu �≠0⇒� có 3 cách chọn, a có 5 cách chọn, b có 5 cách chọn, c có 4 cách chọn, d có 3 cách chọn ⇒900 số

 có 900+360=1260 số

25 tháng 1

Phía trên mình trả lời nhầm nhé.

 

NV
21 tháng 1

8.

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x+3}=a>0\\\sqrt{x^2+4x+5}=b>0\end{matrix}\right.\) \(\Rightarrow2a^2-b^2=x^2+1\)

Pt trở thành:

\(\sqrt{2a^2-b^2}+2a=3b\)

\(\Leftrightarrow\sqrt{2a^2-b^2}=3b-2a\)

\(\Rightarrow2a^2-b^2=4a^2-12ab+9b^2\)

\(\Leftrightarrow2a^2-12ab+10b^2=0\Rightarrow\left[{}\begin{matrix}a=b\\a=5b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x+3}=\sqrt{x^2+4x+5}\\\sqrt{x^2+2x+3}=5\sqrt{x^2+4x+5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+3=x^2+4x+5\\x^2+2x+3=25\left(x^2+4x+5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\24x^2+98x+122=0\left(vn\right)\end{matrix}\right.\)

NV
21 tháng 1

9.

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{1+x}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+2b^2=3-x=-\left(x-3\right)\)

Pt trở thành:

\(a-2b-3ab=-\left(a^2+2b^2\right)\)

\(\Leftrightarrow a-2b+a^2-3ab+2b^2=0\)

\(\Leftrightarrow a-2b+\left(a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a-b+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\a+1=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}=2\sqrt{1-x}\\\sqrt{1+x}+1=\sqrt{1-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}1+x=4\left(1-x\right)\\x+2+2\sqrt{1+x}=1-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=3\Rightarrow x=\dfrac{3}{5}\\-1-2x=2\sqrt{1+x}\left(1\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow\left\{{}\begin{matrix}-1-2x\ge0\\\left(-1-2x\right)^2=4\left(1+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-\dfrac{1}{2}\\x^2=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow x=-\dfrac{\sqrt{3}}{2}\)

Vậy \(x=\left\{\dfrac{3}{5};-\dfrac{\sqrt{3}}{2}\right\}\)