Cho a+b=6,ax+by=10,ax2+by2=24,ax3+by3
tính:M=ax4+by4
mọi người giúp mik bài này nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(\frac{1+x}{1-x}-\frac{1-x}{1+x}-\frac{4x^2}{x^2-1}\right):\frac{4\left(x^2-3\right)}{x\left(1-x\right)}\)
\(=\left(\frac{1+x}{1-x}-\frac{1-x}{1+x}+\frac{4x^2}{1-x^2}\right).\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\left(\frac{\left(1+x\right)^2}{\left(1-x\right)\left(1+x\right)}-\frac{\left(1-x\right)^2}{\left(1+x\right)\left(1-x\right)}+\frac{4x^2}{\left(1+x\right)\left(1-x\right)}\right).\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\left(\frac{\left(1+x\right)^2-\left(1-x\right)^2+4x^2}{\left(1-x\right)\left(1+x\right)}\right).\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\frac{\left(1+x+1-x\right)\left(1+x-1+x\right)+4x^2}{\left(1-x\right)\left(1+x\right)}.\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\frac{2.2x+4x^2}{\left(1+x\right)}.\frac{x}{4\left(x^3-3\right)}\)
\(=\frac{4x+4x^2}{\left(1+x\right)}.\frac{x}{4\left(x^3-3\right)}\)
\(=\frac{4x\left(1+x\right)}{\left(1+x\right)}.\frac{x}{4\left(x^3-3\right)}\)
\(=\frac{x}{1}.\frac{x}{\left(x^3-3\right)}\)
\(=\frac{x^2}{x^3-3}\)
a = 48
b = \(\frac{1}{5}\)
c = 2
d \(\approx0,3904413457\)
\(a,ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
Sao phân số thứ 2 là \(\frac{1-2}{1+x}\) .Bạn chép đề thật chuẩn mới trả lời đúng nhé
Ta có: \(A=\frac{3-2x}{3x-1}\)
=> \(3A=\frac{-\left(6x-9\right)}{3x-1}=\frac{-2\left(3x-1\right)+7}{3x-1}=-2+\frac{7}{3x-1}\)
Để A đạt GTLN <=> 3A đạt GTLN
<=> \(\frac{7}{3x-1}\)đạt GTLN
<=> \(3x-1\)đạt GTNN
Do x \(\in\)Z <=> 3x - 1 = 2 <=> 3x = 3 <=> x = 1
Thay x = 1 vào 3A, ta có: \(-2+\frac{7}{3.1-1}=-2+7=5\)
=> \(A=5:3=\frac{5}{3}\)
Vậy x = 1 (x \(\in\)Z) thì A = \(\frac{3-2x}{3x-1}\)đạt Max
Cách khác nè. Ko bt đg ko
\(A=\frac{3-2x}{3x-1}\Leftrightarrow-A=\frac{2x-3}{3x-1}\Leftrightarrow-3A=\frac{6x-9}{3x-1}\)
\(\Leftrightarrow-3A=\frac{2\left(3x-1\right)-7}{3x-1}=2-\frac{7}{3x-1}\)
-3A đạt GTNN\(\Leftrightarrow\frac{7}{3x-1}\)đạt GTLN\(\Leftrightarrow3x-1\)đạt GTNN\(\Leftrightarrow3x-1=2\Leftrightarrow x=1\)(Vì x thuộc Z)
Khi đó \(\Leftrightarrow-3A==2-\frac{7}{3.1-1}=\frac{-3}{2}\)
Vậy GTLN của A là \(\frac{1}{2}\Leftrightarrow x=1\)
Sai thì mấy anh chị góp ý