Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,Điều kiện để \(\sqrt{a}\) có nghĩa là \(a\ge0\)
2, a, để căn thức \(\sqrt{2x+6}\) có nghĩa \(\Leftrightarrow2x+6\ge0\)
\(\Leftrightarrow2x\ge-6\)
\(\Leftrightarrow x\ge-3\)
b, để căn thức \(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow2x-3\ge0\)
\(\Leftrightarrow2x\ge3\)
\(\Leftrightarrow x\ge\frac{3}{2}\)
a) ĐK: x - 7 < 0
<=> x < 7
Vậy x < 7
b) ĐK: x2 + 2x + 3 >= 0
<=> x2 + 2x + 1 + 2 >= 0
<=> (x + 1)2 + 2 >= 0 (đúng)
Vậy x\(\in\)R
c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)
Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)
\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)
Đế C' nguyên thì a + 1 là ước của 1
\(\Rightarrow a=0\)
\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)
\(\Rightarrow x=\frac{9}{4}\left(l\right)\)
Vậy không có x.
Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks
a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)
\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)
\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)
\(=\frac{1}{3-2\sqrt{x}}\)
Câu b, c tự làm nhé
\(Q=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
b.\(Q< 1\)
\(\Leftrightarrow x-\sqrt{x}-2< x-5\sqrt{x}+6\)
\(\Leftrightarrow4\sqrt{x}-8< 0\)
\(\Leftrightarrow0\le x< 4\)
Vay de Q<1 thi \(0\le0< 4\)
Cứ quy đồng là ra à. Làm biếng trình bày quá. Nên cho bạn đáp số thôi nhé
a/ \(\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)
b/ x = 3 và A = 4
ĐK : \(x\ne0;-1;2\)
a) \(A=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(A=1+\left(\frac{x+1}{x^3+1}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(A=1+\frac{x+1+x+1-2\left(x^2-x+1\right)}{x^3+1}\cdot\frac{x\left(x^2-x+1\right)}{x^2\left(x-2\right)}\)
\(A=1+\frac{-2x^2\left(x-2\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)\cdot x^2\left(x-2\right)}\)
\(A=1+\frac{-2}{x+1}\)
\(A=\frac{x-1}{x+1}\)
b) Để \(A\in Z\)\(\Leftrightarrow x-1⋮x+1\)
\(\Leftrightarrow x+1-2⋮x+1\)
\(\Leftrightarrow-2⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{0;-2;1;-3\right\}\)( thỏa )
Vậy....
Ta có: \(A=\frac{3-2x}{3x-1}\)
=> \(3A=\frac{-\left(6x-9\right)}{3x-1}=\frac{-2\left(3x-1\right)+7}{3x-1}=-2+\frac{7}{3x-1}\)
Để A đạt GTLN <=> 3A đạt GTLN
<=> \(\frac{7}{3x-1}\)đạt GTLN
<=> \(3x-1\)đạt GTNN
Do x \(\in\)Z <=> 3x - 1 = 2 <=> 3x = 3 <=> x = 1
Thay x = 1 vào 3A, ta có: \(-2+\frac{7}{3.1-1}=-2+7=5\)
=> \(A=5:3=\frac{5}{3}\)
Vậy x = 1 (x \(\in\)Z) thì A = \(\frac{3-2x}{3x-1}\)đạt Max
Cách khác nè. Ko bt đg ko
\(A=\frac{3-2x}{3x-1}\Leftrightarrow-A=\frac{2x-3}{3x-1}\Leftrightarrow-3A=\frac{6x-9}{3x-1}\)
\(\Leftrightarrow-3A=\frac{2\left(3x-1\right)-7}{3x-1}=2-\frac{7}{3x-1}\)
-3A đạt GTNN\(\Leftrightarrow\frac{7}{3x-1}\)đạt GTLN\(\Leftrightarrow3x-1\)đạt GTNN\(\Leftrightarrow3x-1=2\Leftrightarrow x=1\)(Vì x thuộc Z)
Khi đó \(\Leftrightarrow-3A==2-\frac{7}{3.1-1}=\frac{-3}{2}\)
Vậy GTLN của A là \(\frac{1}{2}\Leftrightarrow x=1\)
Sai thì mấy anh chị góp ý