K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\frac{x\left(x+2\right)-\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)\(\Leftrightarrow x\left(x+2\right)-\left(x-2\right)=2\)

\(\Leftrightarrow x^2+2x-x+2=2\)\(\Leftrightarrow x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

So sánh với ĐKXĐ ta thấy: \(x=0\)không thoả mãn

Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)

6 tháng 3 2020

Ta có: \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)

   \(\Leftrightarrow\frac{x.\left(x+2\right)-\left(x-2\right)}{\left(x-2\right).x}=\frac{2}{x^2-2x}\)

   \(\Leftrightarrow\frac{x^2+2x-x+2}{x^2-2x}=\frac{2}{x^2-2x}\)

    \(\Rightarrow x^2+x+2=2\)

   \(\Leftrightarrow x^2+x=0\)

   \(\Leftrightarrow x.\left(x+1\right)=0\)

   \(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy \(S=\left\{-1;0\right\}\)

6 tháng 3 2020

Mình thiếu điều kiện xác định ^_^

Cho mình bổ xung thêm

\(ĐKXĐ:x\ne\pm1\)

và mình sửa lại nữa là: \(\orbr{\begin{cases}x=-1\left(L\right)\\x=-3\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{-3\right\}\)

6 tháng 3 2020

\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{x^2+3}{1-x^2}\) đkxđ \(x\ne\pm1\)

\(\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\frac{-x^2-3}{\left(x+1\right)\left(x-1\right)}\)

\(\Leftrightarrow x^2+2x+1-x^2-2x-1+x^2+3=0\)

\(\Leftrightarrow x^2+3=0\)

\(\Leftrightarrow x^2=-3\)

\(\Leftrightarrow x\in\varnothing\)

6 tháng 3 2020

a) \(ĐKXĐ:x\inℝ\)

\(\frac{x^2+2x+3}{x^2-x+1}=0\)

\(\Leftrightarrow x^2+2x+3=0\)

\(\Leftrightarrow\left(x+1\right)^2+2=0\left(ktm\right)\)

\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)

b) \(ĐKXĐ:x\ne\pm2\)

 \(\frac{x}{x+2}+\frac{4}{x-2}=\frac{4}{x^2-4}\)

\(\Leftrightarrow\frac{x}{x+2}+\frac{4}{x-2}-\frac{4}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x\left(x-2\right)+4\left(x+2\right)-4}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x^2-2x+4x+8-4=0\)

\(\Leftrightarrow x^2+2x+4=0\)

\(\Leftrightarrow\left(x+1\right)^2+3=0\left(ktm\right)\)

\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)

6 tháng 3 2020

đề là gì

a)\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}3x-2=0\\x+6=0\\x^2+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2\\x=-6\\x^2=-5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2}{3}\\x=-6\\x\in\varnothing\end{cases}}}\)

vậy x=2/3 hoặc x=-6

6 tháng 3 2020

a, (3x-2) (x+6) (x^2 +5) = 0 

<=> 3x - 2 = 0 hoặc x + 6 = 0 hoặc x2 + 5 = 0 (loại vì x2 \(\ge\)0 => x2 + 5 > 0)

<=> x = 2/3 hoặc x = -6 

b, (2x+5)^2 = (3x-1)^2 

<=> (2x + 5)2 - (3x - 1)2 = 0

<=> (2x + 5 - 3x + 1)(2x + 5 + 3x - 1) = 0

\(\Leftrightarrow\orbr{\begin{cases}2x-3x+6=0\\2x+3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}-x=-6\\5x=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=6\\x=\frac{4}{5}\end{cases}}}\)

c, 4x2 (x-1) - x+1 = 0

<=> 4x2(x - 1) - (x - 1) = 0

<=> (x - 1)(4x2 - 1) = 0

<=> (x - 1)(2x - 1)(2x + 1) = 0

vậy x - 1 = 0 hoặc 2x - 1 = 0 hoặc 2x + 1 = 0

hay x = 1 hoặc x = 1/2 hoặc x = -1/2

6 tháng 3 2020

a) \(10x-\frac{5}{18}+x+\frac{3}{12}=7x+\frac{3}{6}-12-\frac{x}{9}\)

\(10x+x-7x+\frac{x}{9}=\frac{3}{6}+\frac{5}{18}-\frac{3}{12}-12\)

\(\frac{37}{9}x=-\frac{413}{36}\)

\(x=-\frac{413}{148}\)

6 tháng 3 2020

b) x + 4/5 - x - 5 = x + 3/2 - x - 2/2

x - x - x + x = 3/2 - 1 - 4/5 + 5

0x = 47/10

Vậy phương trình vô nghiệm

a) +)Xét tg ABD có: CE //BD(gt)

    Áp dụng đl Ta-let, ta có:

               AB/AC=AD/AE

   +) Xét tam giác ADC có: FE // CD(gt)

   Áp dụng đl Ta-let,ta có:

             AC/AF=AD/AE

b)Từ câu a), ta có:

             AB/AC=AC/AF

     ->AC.AC=AB.AF

      ->AC^2=AB.AF