Cho tam giác ABC có góc BAC = 60o. Tia phân giác của góc ABC cắt AC tại E, tia phân giác của góc ACB cắt AB tại F. BE cắt CF tại I. Chứng minh IE = IF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x:5=y:4\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\)
\(y:2=z:3\Rightarrow\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x+y+z}{5+4+6}=\dfrac{90}{15}=6\)
\(\Rightarrow\dfrac{x}{5}=6\Rightarrow x=30\)
\(\Rightarrow\dfrac{y}{4}=6\Rightarrow y=24\)
\(\Rightarrow\dfrac{z}{6}=6\Rightarrow z=36\)
Gọi số gạo ban đầu trong kho 1;kho 2;kho 3 lần lượt là a(tấn),b(tấn),c(tấn)
(ĐK: a>0; b>0; c>0)
Số gạo của ba kho lần lượt tỉ lệ với \(1,3;2+\dfrac{1}{2}=2,5;6,5\) nên ta có: \(\dfrac{a}{1,3}=\dfrac{b}{2,5}=\dfrac{c}{6,5}\)
=>\(\dfrac{a}{13}=\dfrac{b}{25}=\dfrac{c}{65}\)
Số gạo của kho thứ hai nhiều hơn kho thứ nhất 43,2 tấn nên b-a=43,2
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{13}=\dfrac{b}{25}=\dfrac{c}{65}=\dfrac{b-a}{25-13}=\dfrac{43.2}{12}=3.6\)
=>\(a=3,6\cdot13=46,8;b=25\cdot3,6=90;c=3,6\cdot65=234\)
Số gạo bán được ở kho 1 là:
\(46,8\cdot40\%=18,72\left(tân\right)\)
Số gạo bán được ở kho 2 là:
\(90\cdot30\%=27\left(tấn\right)\)
Số gạo bán được ở kho 3 là:
\(234\cdot25\%=58,5\left(tấn\right)\)
Số gạo bán được là:
18,72+27+58,5=104,22(tấn)
\(4,5:0,3=2,25:\left(0,1x\right)\)
=>\(2,25:\left(0,1x\right)=15\)
=>\(0,1\cdot x=2,25:15=0,15\)
=>\(x=0,15:0,1=1,5\)
Ta có: \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}\) và \(a-2b-3c=14\) \((*)\)
Áp dụng tính chất của dãy tỉ số bằng nhau và \((*)\), ta được:
\(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}=\dfrac{2\left(b-2\right)}{6}=\dfrac{3\left(c-3\right)}{12}\)
\(=\dfrac{\left(a-1\right)-2\left(b-2\right)-3\left(c-3\right)}{2-6-12}\)
\(=\dfrac{a-1-2b+4-3c+9}{-16}\)
\(=\dfrac{\left(a-2b-3c\right)+\left(-1+4+9\right)}{-16}\)
\(=\dfrac{14+12}{-16}=-\dfrac{13}{8}\)
Suy ra: \(\dfrac{a-1}{2}=\dfrac{-13}{8}\)
\(\Rightarrow8\left(a-1\right)=-13\cdot2\)
\(\Rightarrow8a-8=-26\)
\(\Rightarrow8a=-26+8\)
\(\Rightarrow8a=-18\Rightarrow a=-\dfrac{9}{4}\)
a: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó; ΔABI=ΔACI
b: Ta có: ΔAIB=ΔAIC
=>\(\widehat{AIB}=\widehat{AIC}\)
mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)
nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
=>AI\(\perp\)BC
c: Xét ΔABC có
AI là đường trung tuyến
G là trọng tâm
Do đó: \(AG=\dfrac{2}{3}AI=\dfrac{2}{3}\cdot12=8\left(cm\right)\)
Ta có: AG+GI=AI
=>GI+8=12
=>GI=4(cm)
viết biểu thức số biểu thị diện tích của tam giác vuông có cạnh góc vuông lần lượt là 10 cm và 12 cm
Diện tích của tam giác vuông có 2 cạnh góc vuông là 10cm;12cm là:
\(S=\dfrac{1}{2}\cdot10\cdot12\)
Kẻ IH là phân giác của góc BIC
Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(\widehat{ABC}+\widehat{ACB}=180^0-60^0=120^0\)
=>\(2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)
=>\(\widehat{IBC}+\widehat{ICB}=60^0\)
Xét ΔIBC có \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)
=>\(\widehat{BIC}+60^0=180^0\)
=>\(\widehat{BIC}=120^0\)
Ta có: \(\widehat{BIC}+\widehat{BIF}=180^0\)(hai góc kề bù)
=>\(\widehat{BIF}+120^0=180^0\)
=>\(\widehat{BIF}=60^0\)
Ta có: \(\widehat{BIF}=\widehat{EIC}\)(hai góc đối đỉnh)
mà \(\widehat{BIF}=60^0\)
nên \(\widehat{EIC}=60^0\)
IH là phân giác của góc BIC
=>\(\widehat{BIH}=\widehat{CIH}=\dfrac{\widehat{BIC}}{2}=60^0\)
Xét ΔFBI và ΔHBI có
\(\widehat{FBI}=\widehat{HBI}\)
BI chung
\(\widehat{FIB}=\widehat{HIB}\left(=60^0\right)\)
Do đó: ΔFBI=ΔHBI
=>IF=IH
Xét ΔIHC và ΔIEC có
\(\widehat{HIC}=\widehat{EIC}\)
IC chung
\(\widehat{HCI}=\widehat{ECI}\)
Do đó: ΔIHC=ΔIEC
=>IH=IE
mà IH=IF
nên IE=IF