Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
=>ΔABI=ΔACI
b: ΔABC cân tại A
mà AI là trung tuyến
nên AI vuông góc BC
c: GI=1/3*AI=4cm
a: Xét ΔABI và ΔACI có
AB=AC
góc BAI=góc CAI
AI chung
=>ΔABI=ΔACI
b: ΔACB cân tại A
mà AI là phân giác
nên AI vuông góc BC
c: Xét ΔBAC có
AI,CM là các đườg trung tuyến
AI căt CM tại G
=>G là trọng tâm
=>BG là đường trung tuyến của ΔABC
a: Xet ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
CB chung
=>ΔNBC=ΔMCB
=>góc GBC=góc GCB
=>ΔGCB cân tại G
c: góc ECG+góc BCG=90 độ
góc GBC+góc GEC=90 độ
mà góc BCG=góc GBC
nên góc ECG=góc GEC
=>GC=GE=GB
=>G là trung điểm của BE
Xét ΔEBC có GD//CB
nên GD/CB=EG/EB=1/2
=>CB=2GD
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
a) BD=BC/2=12/2=6
Vậy BC=6cm
Áp dụng định lý Py ta go vào tam giác vuông ABD, ta có:
\(AB^2+BD^2=AD^2\)
\(10^2+6^2=136\)
=> AD=\(\sqrt{136}\)
b) Tam giác ABC cân tại A, đường cao AD
=> AD là đường phân giác góc BAC (1)
Sau đó cm góc BG là tia pg góc HBD và CG là tia pg góc DCL cắt nhu tại G.
=> AG là pg góc BAC (2)
Từ (1) và (2) => AG và AD trùng nhau.
=>A, G, D thẳng hàng
a) Xét 2 tam giác BAI và tam giác CAI, ta có:
AB = AC (giả thiết tam giác cân)
góc BAI = góc CAI (AI là tia phân giác góc A)
AI là cạnh chung
\(\Rightarrow\Delta\) BAI = \(\Delta\) CAI (c.g.c)
\(\Rightarrow\) góc BIA = góc CIA (hai góc tương ứng)
Mà 2 góc này ở vị trí kề bù nên ta có: góc BIA = góc CIA = 1/2.\(180^0\)=\(90^0\)
\(\Rightarrow\) AI vuông góc với BC
b) Ta có: BI = CI (2 cạnh tương ứng do tg BAI = tg CAI)
\(\Rightarrow\) AI là trung tuyến của tg ABC
Lại có: BD là trung tuyến của tg ABC
Mà AD giao với BC tại M nên M là trọng tâm của tg ABC
c) Ta có: BI = CI = 1/2.BC = 1/2.6 = 3(cm)
Áp dụng định lí Pitago vào tg vuông AIB có:
\(AB^2=BI^2+AI^2\)
\(\Rightarrow AI^2=AB^2-BI^2\)
\(\Rightarrow AI^2=5^2-3^2=25-9=16\)
\(\Rightarrow\) \(AI=4\) (cm)
\(\Rightarrow AM=\frac{2}{3}.AI=\frac{2}{3}.4=\frac{8}{3}\) (cm)
Vậy AM = 8/3 (cm)
Chúc bạn học tốt !!!
Bài 1:
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường trung tuyến
Xét ΔABC có
AH là đường trung tuyến
BD là đường trung tuyến
AH cắt BD tại E
Do đó: E là trọng tâm của ΔABC