Chứng minh rằng trong một tam giác vuông, tổng cạnh huyền và đường cao tương ứng luôn nhỏ hơn tổng hai cạnh góc vuông.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta biến đổi \(1+\dfrac{1}{\left(k-1\right)\left(k+1\right)}\)
\(=\dfrac{\left(k-1\right)\left(k+1\right)+1}{\left(k-1\right)\left(k+1\right)}\)
\(=\dfrac{\left(k^2-1\right)+1}{\left(k-1\right)\left(k+1\right)}\)
\(=\dfrac{k^2}{\left(k-1\right)\left(k+1\right)}\) (với \(k\ge2\))
Do đó \(P=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{2020.2022}\right)\left(1+\dfrac{1}{2021.2023}\right)\)
\(P=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}...\dfrac{2021^2}{2020.2022}.\dfrac{2022^2}{2021.2023}\)
\(P=\dfrac{2.2022}{2023}\)
\(P=\dfrac{4044}{2023}\)
5x² - 16x = 0
x(5x - 16) = 0
x = 0 hoặc 5x - 16 = 0
*) 5x - 16 = 0
5x = 16
x = 16/5
Vậy x = 0; x = 16/5
Sắp xếp:
A(x) = -2x² + 3x - 4x³ + 3/5 - 5x⁴
= -5x⁴ - 4x³ - 2x² + 3x + 3/5
B(x) = 3x⁴ + 1/5 - 7x² + 5x³ - 9x
= 3x⁴ + 5x³ - 7x² - 9x + 1/5
--------
A(x) + B(x) = (-5x⁴ - 4x³ - 2x² + 3x + 3/5) + (3x⁴ + 5x³ - 7x² - 9x + 1/5)
= -5x⁴ - 4x³ - 2x² + 3x + 3/5 + 3x⁴ + 5x³ - 7x² - 9x + 1/5
= (-5x⁴ + 3x⁴) + (-4x³ + 5x³) + (-2x² - 7x²) + (3x - 9x) + (3/5 + 1/5)
= -2x⁴ + x³ - 9x² - 6x + 4/5
-----------
A(x) - B(x) = (-5x⁴ - 4x³ - 2x² + 3x + 3/5) - (3x⁴ + 5x³ - 7x² - 9x + 1/5)
= -5x⁴ - 4x³ - 2x² + 3x + 3/5 - 3x⁴ - 5x³ + 7x² + 9x - 1/5
= (-5x⁴ - 3x⁴) + (-4x³ - 5x³) + (-2x² + 7x²) + (3x + 9x) + (3/5 - 1/5)
= -8x⁴ - 9x³ + 5x² + 12x + 2/5
Sắp xếp:
\(A=-2x^2+3x-4x^3+\dfrac{3}{5}-5x^4=-5x^4-4x^3-2x^2+3x+\dfrac{3}{5}\)
\(B=3x^4+\dfrac{1}{5}-7x^2+5x^3-9x=3x^4+5x^3-7x^2-9x+\dfrac{1}{5}\)
Tính:
\(A\left(x\right)+B\left(x\right)\)
\(=-5x^4-4x^3-2x^2+3x+\dfrac{3}{5}+3x^4+5x^3-7x^2-9x+\dfrac{1}{5}\)
\(=\left(-5x^4+3x^4\right)+\left(-4x^3+5x^3\right)+\left(-2x^2-7x^2\right)+\left(3x-9x\right)+\left(\dfrac{3}{5}+\dfrac{1}{5}\right)\)
\(=-2x^4+x^3-9x^2-6x+\dfrac{4}{5}\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(-5x^4-4x^3-2x^2+3x+\dfrac{3}{5}\right)-\left(3x^4+5x^3-7x^2-9x+\dfrac{1}{5}\right)\)
\(=-5x^4-4x^3-2x^2+3x+\dfrac{3}{5}-3x^4-5x^3+7x^2+9x-\dfrac{1}{5}\)
\(=\left(-5x^4-3x^4\right)+\left(-4x^3-5x^3\right)+\left(-2x^2+7x^2\right)+\left(3x+9x\right)+\left(\dfrac{3}{5}-\dfrac{1}{5}\right)\)
\(=-8x^4-8x^3+5x^2+12x+\dfrac{2}{5}\)
\(\dfrac{x-3}{x+7}\) = \(\dfrac{1}{6}\)
6.(\(x-3\)) = \(x+7\)
6\(x-18\) = \(x+7\)
6\(x\) - \(x\) = 18 + 7
5\(x\) = 25
\(x\) = 5
Thay \(x=5\) vào \(\dfrac{x+4}{9}=\dfrac{y}{13}\) ta có:
\(\dfrac{5+4}{9}\) = \(\dfrac{y}{13}\)
1 = \(\dfrac{y}{13}\)
y = 13
Vậy (\(x;y\)) =(5; 13)
a) \(A\left(x\right)+B\left(x\right)\)
\(=\left(-x^6+x^4-4x^3+x^2-5\right)+\left(2x^5-x^4-x^3+x^2+x-1\right)\)
\(=-x^6+x^4-4x^3+x^2-5+2x^5-x^4-x^3+x^2+x-1\)
\(=-x^6+2x^5-5x^3+2x^2+x-6\)
b) \(A\left(x\right)-B\left(x\right)\)
\(=\left(-x^6+x^4-4x^3+x^2-5\right)-\left(2x^5-x^4-x^3+x^2+x-1\right)\)
\(=-x^6+x^4-4x^3+x^2-5-2x^5+x^4+x^3-x^2-x+1\)
\(=-x^6-2x^5+2x^4-3x^3-x-4\)
Ta có: \(A\left(x\right)=-x^6+x^4-4x^3+x^2-5\)
và \(B\left(x\right)=2x^5-x^4-x^3+x^2+x-1\)
a) \(A\left(x\right)+B\left(x\right)=\left(-x^6+x^4-4x^3+x^2-5\right)+\left(2x^5-x^4-x^3+x^2+x-1\right)\)
\(=-x^6+2x^5+\left(x^4-x^4\right)+\left(-4x^3-x^3\right)+\left(x^2+x^2\right)+x+\left(-5-1\right)\)
\(=-x^6+2x^5-5x^3+2x^2+x-6\)
b) \(A\left(x\right)-B\left(x\right)=\left(-x^6+x^4-4x^3+x^2-5\right)-\left(2x^5-x^4-x^3+x^2+x-1\right)\)
\(=-x^6+x^4-4x^3+x^2-5-2x^5+x^4+x^3-x^2-x+1\)
\(=-x^6-2x^5+\left(x^4+x^4\right)+\left(-4x^3+x^3\right)+\left(x^2-x^2\right)-x+\left(-5+1\right)\)
\(=-x^6-2x^5+2x^4-3x^3-x-4\)
\(\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Rightarrow\left(x-1\right)^4-\left(x-1\right)^2=0\)
\(\Rightarrow\left(x-1\right)^2\left[\left(x-1\right)^2-1\right]=0\)
+) \(\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
+) \(\left(x-1\right)^2-1=0\)
\(\Rightarrow\left(x-1\right)^2=1\)
\(\Rightarrow\left(x-1\right)^2=1^2\)
TH1: \(x-1=1\Rightarrow x=1+1=2\)
TH2: \(x-1=-1\Rightarrow x=-1+1=0\)
Vậy: \(x\in\left\{1;2;0\right\}\)
\(\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Rightarrow\left(x-1\right)^2-\left(x-1\right)^4=0\)
\(\Rightarrow\left(x-1\right)^2\left[1-\left(x-1\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\1-\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\\x-1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{1;2;0\right\}\)
Đề sai vì khi lấy tam giác vuông có độ dài hai cạnh góc vuông là 3 và 4, cạnh huyền là 5 thì chiều cao là:
3 . 4 : 5 = 2,4
Mà 2,4 + 5 > 3 + 4 (vì 7,4 > 7)
Theo mình thì nó phải là ngược lại mới đúng: Tổng cạnh huyền và đường cao tương ứng luôn lớn hơn tổng hai cạnh góc vuông. (*)
Chứng minh:
Ta có \(AB^2+AC^2=BC^2\) (định lý Pythagoras)
\(\Leftrightarrow AB^2+2AB.AC+BC^2=BC^2+2AH.BC\)
\(\Leftrightarrow\left(AB+AC\right)^2=BC\left(2AH+BC\right)\)
Mà \(BC\left(2AH+BC\right)\le\left(\dfrac{BC+2AH+BC}{2}\right)^2\) \(=\left(AH+BC\right)^2\) (áp dụng bất đẳng thức \(ab\le\left(\dfrac{a+b}{2}\right)^2\))
Dấu "=" không thể xảy ra vì khi đó \(BC=BC+2AH\), vô lí.
Vậy \(\left(AB+AC\right)^2=BC\left(2AH+BC\right)< \left(AH+BC\right)^2\)
\(\Leftrightarrow AB+AC< AH+BC\).
Vậy (*) được chứng minh.