90+{20 - 10 + [12 + 78 + (5^2 - 15)]}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(40=2^3.5\\ 28=2^2.7\\ 140=2^2.5.7\\ \Rightarrow\text{BCNN}\left(40;28;140\right)=2^3.5.7=280\)
\(\left(x^2-4\right)+\left(x-2\right)\left(3-2x\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3-2x\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\\ \Leftrightarrow\left(x-2\right)\left(5-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\5-x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
Gọi H là giao điểm của CN với BM
Xét ΔHCB có
CM,BN là các đường cao
CM cắt BN tại A
Do đó: A là trực tâm của ΔHCB
=>HA\(\perp\)CB tại K
Xét ΔBKA vuông tại K và ΔBNC vuông tại N có
\(\widehat{CBN}\) chung
Do đó: ΔBKA~ΔBNC
=>\(\dfrac{BK}{BN}=\dfrac{BA}{BC}\)
=>\(BN\cdot BA=BK\cdot BC\)
Xét ΔCKA vuông tại K và ΔCMB vuông tại M có
\(\widehat{KCA}\) chung
Do đó: ΔCKA~ΔCMB
=>\(\dfrac{CK}{CM}=\dfrac{CA}{CB}\)
=>\(CM\cdot CA=CK\cdot CB\)
\(BA\cdot BN+CA\cdot CM\)
\(=BC\cdot BK+BC\cdot CK=BC\left(BK+CK\right)=BC^2\)
$80+\{20-10.[23+17]+(12+2^3)\}$
$=80+\{20-10.40+(12+8)\}$
$=80+\{20-400+20\}$
$=80+20-400+20$
$=100-400+20$
$=-300+20=-280$
Sao ngoặc tròn lại bên ngoài ngoặc vuông ạ? Bạn xem lại đề bài.
\(30=2\cdot3\cdot5;150=2\cdot3\cdot5^2\)
=>\(BCNN\left(30;150\right)=2\cdot3\cdot5^2=150\)
Ta có:
\(30=2.3.5\)
\(150=2.3.5^2\)
\(BCNN\left(30;150\right)=2.3.5^2=2.3.25=150\)
\(#NqHahh\)
\(\left(\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dots+\dfrac{2}{28.30}\right).30-0,2\times\left(x-1\right)=10\\ \left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dots+\dfrac{1}{28}-\dfrac{1}{30}\right).30-0,2\times\left(x-1\right)=10\\ \left(1-\dfrac{1}{30}\right).30-0,2\times\left(x-1\right)=10\\ 30-1-0,2\times\left(x-1\right)=10\\ 29-0,2\times\left(x-1\right)=10\\ 0,2\times\left(x-1\right)=29-10\\ 0,2\times\left(x-1\right)=19\\ x-1=19:0,2\\ x-1=95\\ x=95+1=96\)
\(\left(\dfrac{1}{1\cdot2}+\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{28\cdot30}\right)\cdot30-0,2\cdot\left(x-1\right)=10\)
=>\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{28}-\dfrac{1}{30}\right)\cdot30-0,2\left(x-1\right)=10\)
=>\(\dfrac{29}{30}\cdot30-0,2\left(x-1\right)=10\)
=>\(29-0,2\left(x-1\right)=10\)
=>\(0,2\left(x-1\right)=29-10=19\)
=>x-1=19:0,2=95
=>x=95+1=96
\(\left(2x-3\right)\left(5x+1\right)=\left(3-2x\right)\left(x-5\right)\)
=>\(\left(2x-3\right)\left(5x+1\right)-\left(3-2x\right)\left(x-5\right)=0\)
=>\(\left(2x-3\right)\left(5x+1\right)+\left(2x-3\right)\left(x-5\right)=0\)
=>\(\left(2x-3\right)\left(5x+1+x-5\right)=0\)
=>\(\left(2x-3\right)\left(6x-4\right)=0\)
=>\(2\left(2x-3\right)\left(3x-2\right)=0\)
=>(2x-3)(3x-2)=0
=>\(\left[{}\begin{matrix}2x-3=0\\3x-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(\left(2x-3\right)\left(5x+1\right)=\left(3-2x\right)\left(x-5\right)\\ \Leftrightarrow\left(2x-3\right)\left(5x+1\right)+\left(2x-3\right)\left(x-5\right)=0\\ \Leftrightarrow\left(2x-3\right)\left(5x+1+x-5\right)=0\\ \Leftrightarrow\left(2x-3\right)\left(6x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=0\\6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\6x=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(24=2^3\cdot3;40=2^3\cdot5;168=2^3\cdot3\cdot7\)
=>\(BCNN\left(24;40;168\right)=2^3\cdot3\cdot5\cdot7=840\)
\(90+\left\{20-10+\left[12+78+\left(5^2-15\right)\right]\right\}\)
\(=90+\left\{20-10+\left[12+78+\left(25-15\right)\right]\right\}\)
\(=90+\left\{20-10+\left[12+78+10\right]\right\}\)
\(=90+\left\{20-10+\left[90+10\right]\right\}\)
\(=90+\left\{20-10+100\right\}\)
\(=90+\left\{10+100\right\}\)
\(=90+110\)
\(=200\)
\(#NqHahh\)
$90+\{20-10+[12+78+(5^2-15)]\}$
$=90+10+[90+(25-15)]$
$=100+(90+10)$
$=100+100=200$