Câu 1. (1 điểm)
Giải phương trình $\sqrt{{{x}^{2}}-3x+3}=2x-1$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một mảnh đất hình chữ nhật có chiều dài là 30, chều rộng bằng 1/3.
Trên mảnh vườn đó trồng khoai. Cứ 10 m2 thì được 50 kg khoai.Hỏi diện tích và số kg khoai
Chiều rộng mảnh vườn là:
30*1/3=10(m)
diện tích mảnh vườn đó là:
30*10=300(m2)
số kg khoai thu đc là:
300:10*50=1500kg=1,5 tấn
Cần đề cụ thể hơn để có thể trả lời chắc chắn, nhưng 99% trong các trường hợp tương tự của bài này thì dùng tổ hợp
Đề đây ạ:
Một hộp đựng 9 thẻ được đánh số 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 . Rút ngẫu nhiên đồng thời hai thẻ và nhân hai số ghi trên hai thẻ lại với nhau. Tính xác suất để kết quả thu được là một số chẵn.
Nhưng em ko hiểu chỗ không gian mẫu, sao lại dùng tổ hợp ạ? Em nghĩ TH bốc thẻ 1 rồi thẻ 2 sẽ tính là 1TH rồi bốc thẻ 2 rồi thẻ 1 sẽ là TH nữa
Chọn 2 thẻ từ bộ 9 thẻ thì có $C^2_9=36$ cách (đây chính là không gian mẫu)
Gọi pt chính tắc của elip cần tìm là \(\left(E\right):\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\). Do (E) đi qua \(\left(2;2\sqrt{6}\right)\) nên \(\dfrac{4}{a^2}+\dfrac{24}{b^2}=1\). Đồng thời (E) đi qua \(N\left(4;-\sqrt{15}\right)\) nên \(\dfrac{16}{a^2}+\dfrac{15}{b^2}=1\). Ta có hệ pt: \(\left\{{}\begin{matrix}\dfrac{4}{a^2}+\dfrac{24}{b^2}=1\\\dfrac{16}{a^2}+\dfrac{15}{b^2}=1\end{matrix}\right.\) . (I)
Đặt \(\dfrac{1}{a^2}=u\) và \(\dfrac{1}{b^2}=v\) \(\left(u,v>0\right)\). Khi đó hệ (I) trở thành \(\left\{{}\begin{matrix}4u+24v=1\\16u+15v=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{1}{36}\\v=\dfrac{1}{27}\end{matrix}\right.\) (nhận) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a^2}=\dfrac{1}{36}\\\dfrac{1}{b^2}=\dfrac{1}{27}\end{matrix}\right.\)
Vậy pt chính tắc của elip cần tìm là \(\left(E\right):\dfrac{x^2}{36}+\dfrac{y^2}{27}=1\)
Khi đó \(c=\sqrt{a^2-b^2}=\sqrt{36-27}=3\) nên tọa độ các tiêu điểm của *(E) là \(F_1\left(-3;0\right);F_2\left(3;0\right)\) . Tâm sai của (E) là \(e=\dfrac{c}{a}=\dfrac{3}{6}=\dfrac{1}{2}\)
Gọi M(x,y)
Trong (E) có : \(c=\sqrt{a^2-b^2}=\sqrt{5}\)
Từ đó ta có : \(F_1\left(\sqrt{5};0\right);F_2\left(-\sqrt{5};0\right)\); \(F_1F_2=2\sqrt{5}\)
=> \(\overrightarrow{F_1M}\left(x-\sqrt{5};y\right)\Rightarrow F_1M^2=\left(x-\sqrt{5}\right)^2+y^2\)
tương tự \(F_2M^2=\left(x+\sqrt{5}\right)^2+y^2\)
Do \(\widehat{F_1MF_2}=90^{\text{o}}\) nên tam giác F1MF2 vuông tại M
=> F1M2 + F2M2 = F1F22
<=> \(\left(x-\sqrt{5}\right)^2+y^2+\left(x+\sqrt{5}\right)^2+y^2=20\)
\(\Leftrightarrow x^2+y^2=5\)
Lại có \(M\in\left(E\right)\Rightarrow\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)
từ đó ta có hệ \(\left\{{}\begin{matrix}x^2+y^2=5\\\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=\dfrac{9}{5}\\y^2=\dfrac{16}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{3\sqrt{5}}{5}\\y=\pm\dfrac{4\sqrt{5}}{5}\end{matrix}\right.\)
Theo đề ra ta có hệ :
\(\left\{{}\begin{matrix}\dfrac{4}{a^2}=1\\\dfrac{1}{a^2}+\dfrac{\dfrac{3}{4}}{b^2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\\dfrac{\dfrac{3}{4}}{b^2}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Vậy (a,b) = (2,1)
ĐKXĐ : \(x^2-3x+3\ge0\Leftrightarrow x\inℝ\)
Ta có : \(\sqrt{x^2-3x+3}=2x-1\)
\(\Leftrightarrow x^2-3x+3=\left(2x-1\right)^2\) (với \(2x-1\ge0\Leftrightarrow x\ge\dfrac{1}{2}\left(^∗\right)\)
\(\Leftrightarrow3x^2-x-2=0\)
\(\Leftrightarrow\left(x-1\right).\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-\dfrac{2}{3}\left(\text{loại}\right)\end{matrix}\right.\)
Tập nghiệm S = {1}