K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2023

ĐKXĐ : \(x^2-3x+3\ge0\Leftrightarrow x\inℝ\)

Ta có : \(\sqrt{x^2-3x+3}=2x-1\)

\(\Leftrightarrow x^2-3x+3=\left(2x-1\right)^2\) (với \(2x-1\ge0\Leftrightarrow x\ge\dfrac{1}{2}\left(^∗\right)\)

\(\Leftrightarrow3x^2-x-2=0\)

\(\Leftrightarrow\left(x-1\right).\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-\dfrac{2}{3}\left(\text{loại}\right)\end{matrix}\right.\)

Tập nghiệm S = {1}

21 tháng 4 2023

Một mảnh đất hình chữ nhật có chiều dài là 30, chều rộng bằng 1/3.

Trên mảnh vườn đó trồng khoai. Cứ 10 m2 thì được 50 kg khoai.Hỏi diện tích và số kg khoai

3 tháng 5 2023

                    Chiều rộng mảnh vườn là:

                             30*1/3=10(m)

                     diện tích mảnh vườn đó là:

                              30*10=300(m2)

                     số kg khoai thu đc là:

                              300:10*50=1500kg=1,5 tấn

NV
20 tháng 4 2023

Cần đề cụ thể hơn để có thể trả lời chắc chắn, nhưng 99% trong các trường hợp tương tự của bài này thì dùng tổ hợp

20 tháng 4 2023

Đề đây ạ:
Một hộp đựng 9 thẻ được đánh số  1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 . Rút ngẫu nhiên đồng thời hai thẻ và nhân hai số ghi trên hai thẻ lại với nhau. Tính xác suất để kết quả thu được là một số chẵn.

Nhưng em ko hiểu chỗ không gian mẫu, sao lại dùng tổ hợp ạ? Em nghĩ TH bốc thẻ 1 rồi thẻ 2 sẽ tính là 1TH rồi bốc thẻ 2 rồi thẻ 1 sẽ là TH nữa 

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Chọn 2 thẻ từ bộ 9 thẻ thì có $C^2_9=36$ cách (đây chính là không gian mẫu)

20 tháng 4 2023

Gọi pt chính tắc của elip cần tìm là \(\left(E\right):\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\). Do (E) đi qua \(\left(2;2\sqrt{6}\right)\) nên \(\dfrac{4}{a^2}+\dfrac{24}{b^2}=1\). Đồng thời (E) đi qua \(N\left(4;-\sqrt{15}\right)\) nên \(\dfrac{16}{a^2}+\dfrac{15}{b^2}=1\). Ta có hệ pt: \(\left\{{}\begin{matrix}\dfrac{4}{a^2}+\dfrac{24}{b^2}=1\\\dfrac{16}{a^2}+\dfrac{15}{b^2}=1\end{matrix}\right.\) . (I)

Đặt \(\dfrac{1}{a^2}=u\) và \(\dfrac{1}{b^2}=v\) \(\left(u,v>0\right)\). Khi đó hệ (I) trở thành \(\left\{{}\begin{matrix}4u+24v=1\\16u+15v=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{1}{36}\\v=\dfrac{1}{27}\end{matrix}\right.\) (nhận) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a^2}=\dfrac{1}{36}\\\dfrac{1}{b^2}=\dfrac{1}{27}\end{matrix}\right.\) 

Vậy pt chính tắc của elip cần tìm là \(\left(E\right):\dfrac{x^2}{36}+\dfrac{y^2}{27}=1\)

20 tháng 4 2023

 Khi đó \(c=\sqrt{a^2-b^2}=\sqrt{36-27}=3\) nên tọa độ các tiêu điểm của *(E) là \(F_1\left(-3;0\right);F_2\left(3;0\right)\) . Tâm sai của (E) là \(e=\dfrac{c}{a}=\dfrac{3}{6}=\dfrac{1}{2}\)

20 tháng 4 2023

Gọi M(x,y) 

Trong (E) có : \(c=\sqrt{a^2-b^2}=\sqrt{5}\)

Từ đó ta có : \(F_1\left(\sqrt{5};0\right);F_2\left(-\sqrt{5};0\right)\)\(F_1F_2=2\sqrt{5}\) 

=> \(\overrightarrow{F_1M}\left(x-\sqrt{5};y\right)\Rightarrow F_1M^2=\left(x-\sqrt{5}\right)^2+y^2\)

tương tự \(F_2M^2=\left(x+\sqrt{5}\right)^2+y^2\)

Do \(\widehat{F_1MF_2}=90^{\text{o}}\) nên tam giác F1MF2 vuông tại M

=> F1M2 + F2M2 = F1F22

<=>  \(\left(x-\sqrt{5}\right)^2+y^2+\left(x+\sqrt{5}\right)^2+y^2=20\)

\(\Leftrightarrow x^2+y^2=5\)

Lại có \(M\in\left(E\right)\Rightarrow\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)

từ đó ta có hệ \(\left\{{}\begin{matrix}x^2+y^2=5\\\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=\dfrac{9}{5}\\y^2=\dfrac{16}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{3\sqrt{5}}{5}\\y=\pm\dfrac{4\sqrt{5}}{5}\end{matrix}\right.\)

 

20 tháng 4 2023

Theo đề ra ta có hệ : 

 \(\left\{{}\begin{matrix}\dfrac{4}{a^2}=1\\\dfrac{1}{a^2}+\dfrac{\dfrac{3}{4}}{b^2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\\dfrac{\dfrac{3}{4}}{b^2}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

Vậy (a,b) = (2,1) 

20 tháng 4 2023

Có \(c=\sqrt{a^2-b^2}=\sqrt{11}\)

Tiêu điểm \(F_1\left(\sqrt{11},0\right);F_2\left(-\sqrt{11},0\right)\)

Tiêu cự \(F_1F_2=2\sqrt{11}\)

Trục lớn : 2a = 12

Trục bé 2b = 10

Tâm sai \(e=\dfrac{c}{a}=\dfrac{\sqrt{11}}{6}\)