Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta tô màu trắng , đen cho mỗi ô của bảng như bàn cờ vua ( tức là 2 ô gần nhau cùng nằm trên 1 hàng hoặc 1 cột thì khác màu nhau ).Do bàn cờ có số ô là lẻ
( 9.9=81) nên số ô đen, ô trắng khác nhau; ta giả sử có 41 ô trắng và 40 ô đen.
Sau 1 tiếng trống , châu chấu ( tất cả châu chấu ) sẽ ở ô bên cạnh tức là có màu ngược so với ô ban đầu nên sẽ ở 41 ô đen , 40 ô trắng .
Do đó phải có 2 ô đen trùng nhau , tức là sau 1 tiếng gõ trống chắc chắn sẽ có 2 con châu chấu nhảy vào cùng 1 ô vuông.
Để giải quyết bài toán này, ta có thể sử dụng phương pháp đồ thị.
Xét ô đất như một đỉnh trên đồ thị, và việc chia ô đất cho gia đình tương đương với việc nối các đỉnh trên đồ thị bằng các cạnh. Ta sẽ xây dựng đồ thị với 25 đỉnh (tương ứng với 25 ô đất) và xem xét các điều kiện sau đây:
1. Mỗi đỉnh kề với đỉnh khác trên cạnh chung:
- Xếp 5 hàng, mỗi hàng có 5 ô.
- Cả hàng ngang và hàng dọc đều được xem xét là kề với nhau.
2. Mỗi đỉnh không kề với đỉnh khác trên cạnh chung:
- Khi xếp 5 hàng, mỗi hàng sẽ không kề với hàng đối diện (cùng cột).
- Khi xếp 5 cột, mỗi cột sẽ không kề với cột đối diện (cùng hàng).
Ta sẽ xây dựng đồ thị dựa trên các điều kiện trên. Đồ thị có 25 đỉnh và các cạnh được nối giữa các đỉnh mà thỏa mãn các điều kiện trên. Nếu ta có thể xây dựng được đồ thị như v
a) Năm 2019:
+) Số trung bình: \(\overline x = \frac{{54 + 22 + 24 + 30 + 35 + 40 + 31 + 29 + 29 + 37 + 40 + 31}}{{12}} = 33,5\)
+) Phương sai \({S^2} = \frac{1}{{12}}\left( {{{54}^2} + {{22}^2} + ... + {{31}^2}} \right) - 33,{5^2} = 67,25\) => Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 8,2\)
+) Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1}\)
Sắp xếp mẫu số liệu theo thứ tự không giảm: 22, 24, 29, 29, 30, 31, 31, 35, 37, 40, 40, 54
\({Q_2} = {M_e} = \frac{1}{2}(31 + 31) = 31\)
\({Q_1}\) là trung vị của nửa số liệu: 22, 24, 29, 29, 30, 31. Do đó \({Q_1} = 29\)
\({Q_3}\) là trung vị của nửa số liệu: 31, 35, 37, 40, 40, 54. Do đó \({Q_3} = 38,5\)
\( \Rightarrow {\Delta _Q} = 38,5 - 29 = 9,5\)
Năm 2020:
+) Số trung bình: \(\overline x = 34,5\)
+) Phương sai \({S^2} = \frac{1}{{12}}\left( {{{45}^2} + {{28}^2} + ... + {{37}^2}} \right) - 34,{5^2} = 15,75\) => Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 3,97\)
+) Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1}\)
Sắp xếp mẫu số liệu theo thứ tự không giảm: 28, 31, 32, 33, 33, 34, 34, 35, 35, 37, 37, 45.
\({Q_2} = {M_e} = \frac{1}{2}(34 + 34) = 34\)
\({Q_1}\) là trung vị của nửa số liệu: 28, 31, 32, 33, 33, 34. Do đó \({Q_1} = 32,5\)
\({Q_3}\) là trung vị của nửa số liệu: 34, 35, 35, 37, 37, 45. Do đó \({Q_3} = 36\)
\( \Rightarrow {\Delta _Q} = 36 - 32,5 = 3,5\)
b) Nhận xét:
So sánh số trung bình: số lượng bán ra trung bình theo tháng không tăng nhiều so với năm trước (tăng 1)
So sánh độ lệch chuẩn: Số lượng xe bán ra năm 2020 không có sự chênh lệch quá nhiều giữa các tháng.
=> Tác động của chiến lược: Số lượng xe bán ra tăng ít, nhưng đồng đều giữa các tháng.
a) Biến cố: “Bi lấy ra có màu xanh hoặc đen hoặc trắng” là biến cố: “Không xảy ra H” do đó là biến cố \(\overline H \).
b) \(\overrightarrow K \) là biến cố: “Không xảy ra K” tức là biến cố: “Bi lấy ra có màu đỏ hoặc màu đen”. Do đó biến cố: “Bi lấy ra màu đen” không phải là biến cố \(\overline K \).
Lấy ngẫu nhiên từ mỗi túi 1 viên bi: \(C^1_5.C^1_9\) ( cách )
Trường hợp 1: Lấy ra từ mỗi túi 1 viên bi đỏ:
\(C^1_3.C^1_4\) ( cách )
Trường hợp 2: Lấy ra từ mỗi túi 1 viên bi xanh
\(C^1_2.C^1_5\) ( cách )
Xác suất lấy được 2 bi cùng màu là: \(\dfrac{C^1_3.C^1_4+C^1_2.C^1_5}{C^1_5.C^1_9}=\dfrac{22}{45}\)
Lấy ngẫu nhiên 1 bi từ các túi có :
\(TH1:\) Lấy 1 bi từ túi số 1 có 3 bi đỏ và 2 bi xanh có \(C^1_5\) cách
\(TH2:\) Lấy 1 bi từ túi số 2 có 4 bi đỏ, 5 bi xanh có \(C_9^1\) cách
Theo quy tắc cộng, ta có \(C_5^1+C_9^1=14\) cách lấy ngẫu nhiên 1 bi từ các túi.
Vậy \(n\left(\Omega\right)=14\)
Gọi \(A:``\) Lấy ra 2 bi cùng màu \("\)
\(TH1:\) Lấy ra mỗi túi 1 bi đỏ có \(C^1_3.C_4^1\) cách
\(TH2:\) Lấy ra mỗi túi 1 bi xanh có \(C_2^1.C_5^1\) cách
Theo quy tắc cộng, ta có \(C^1_3.C_4^1+C_2^1.C^1_5=22\)
\(\Rightarrow n\left(A\right)=22\)
Xác suất \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{22}{14}=\dfrac{11}{7}\)
Hình vuông có 3 cách tô
Hiình tròn có 2 cách tô
=> 3x2=6 cách tô
Hình vuông có 3 cách tô
Hiình tròn có 2 cách tô
=> 3x2=6 cách tô
Một mảnh đất hình chữ nhật có chiều dài là 30, chều rộng bằng 1/3.
Trên mảnh vườn đó trồng khoai. Cứ 10 m2 thì được 50 kg khoai.Hỏi diện tích và số kg khoai
Chiều rộng mảnh vườn là:
30*1/3=10(m)
diện tích mảnh vườn đó là:
30*10=300(m2)
số kg khoai thu đc là:
300:10*50=1500kg=1,5 tấn