K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bn vào trang cá nhân của mk nha

31 tháng 3 2022

Ta có:

\(\sqrt{\frac{1}{x+3}}+\sqrt{\frac{5}{x+4}}=4\)

\(\Leftrightarrow2-\sqrt{\frac{1}{x+3}}+2-\sqrt{\frac{5}{x+4}}=4\)

\(\Leftrightarrow\frac{4-\frac{1}{x+3}}{2+\sqrt{\frac{1}{x+3}}}+\frac{4-\frac{5}{x+4}}{2+\sqrt{\frac{5}{x+4}}}=0\)

\(\Leftrightarrow\frac{4x+11}{2+\sqrt{\frac{1}{x+3}}}+\frac{4x+11}{2+\sqrt{\frac{5}{x+4}}}=0\)

\(\Leftrightarrow\left(4x+11\right)\left(\frac{1}{2+\sqrt{\frac{1}{x+3}}}+\frac{1}{2+\sqrt{\frac{5}{x+4}}}\right)=0\)

\(\Leftrightarrow x=-\frac{11}{4}\)

9 tháng 4 2022

Phương trình hoành độ giao điểm: 

x2 = 2x - m

<=> x2 - 2x + m = 0

Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)

<=> (-1)2 - m > 0

<=> 1 - m > 0

<=> m < 1

Ta có: y1 = x12  

          y2 = x22 

y1 + y2 + x12x22 = 6(x1 + x2)

<=> x12 + x22 + x12x22 = 6(x1 + x2)

<=> (x1 + x2)- 2x1x2 + (x1x2)2 = 6(x1 + x2)

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)

<=> 22 - 2m + m2 = 6.2

<=> 4 - 2m + m2 = 12

<=> 4 - 2m + m2 - 12 = 0

<=> m2 - 2m - 8 = 0

<=> m = 4 (ktm) hoặc m = -2 (tm)

=> m = -2

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2

10 tháng 4 2022

a) Thay A(1; -9) vào (d), ta có:

-9 = 3m + 1 - m2

<=> -9 - 3m - 1 + m2 = 0

<=> -10 - 3m + m2 = 0

<=> m = 5 hoặc m = -2

b) Lập phương trình hoành độ giao điểm:

x2 = 3mx + 1 - m2

<=> x2 - 3mx - 1 + m2 = 0

Để (d) cắt (P) tại hai điểm phân biệt <=> \(\Delta>0\)

<=> (-3m)2 - 4.1.(-1 + m2) = 0

<=> 9m2 + 4 - 4m2 > 0

<=> 5m2 + 4 > 0\(\forall m\)

Ta có: x1 + x2 = 2x1x2 

Theo viet ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=3m\\x_1x_2=\frac{c}{a}=-1+m^2\end{cases}}\)

<=> 3m = 2(-1 + m2)

<=> 3m = -2 + m2 

<=> 3m + 2 - m2 = 0

<=> \(x_{1;2}=\frac{3\pm\sqrt{17}}{2}\)

1 tháng 4 2022

A B C O D E K Q N I F x y

a) Do \(\widehat{EKA}=\widehat{EQA}=90^0\) nên \(AQKE\) nội tiếp. Suy ra \(\widehat{KQE}=\widehat{KAE}=\widehat{BCE}.\)

b) Tứ giác \(EDBK\) nội tiếp vì \(\widehat{EDB}=\widehat{EKB}=90^0\). Suy ra:

\(\widehat{EDK}=\widehat{EBK}=\widehat{ECA}\). Vậy thì \(DECN\) nội tiếp

Từ đó \(\widehat{END}=\widehat{ECB}=\widehat{EQK}\) và \(\widehat{DEN}=\widehat{ACB}=\widehat{QAK}=\widehat{KEQ}\)

Suy ra \(\Delta EDN~\Delta EKQ\). Vậy \(\frac{EN}{EQ}=\frac{ND}{QK}\Leftrightarrow EN.QK=ND.EQ\)

c) Ta có \(EF||AO\) vì cùng vuông góc với \(xy\). Do đó:

\(\widehat{EFB}=\widehat{BAO}=\widehat{EAC}=\widehat{EBI}\). Suy ra \(\Delta EIB~\Delta EBF\)

Suy ra \(\frac{EI}{EB}=\frac{EB}{EF}\Leftrightarrow\frac{EI}{EF}=\frac{EB^2}{EF^2}=\frac{BI^2}{FB^2}\) (1)

Ta lại có \(\widehat{FBI}=\widehat{KED},\widehat{BFI}=\widehat{EBI}=\widehat{EKD}\), cho nên \(\Delta FBI~\Delta KED\)

Suy ra \(\frac{BI^2}{FB^2}=\frac{ED^2}{EK^2}=\frac{S_{END}}{S_{EQK}}\) (2) do \(\Delta EDN~\Delta EKQ\)

Từ (1) và (2) ta suy ra \(\frac{S_{END}}{S_{EQK}}=\frac{EI}{EF}.\)

DD
31 tháng 3 2022

\(x^2+2018\sqrt{2x^2+1}=x+1+2018\sqrt{x^2+x+2}\)(ĐK: \(x\inℝ\))

\(\Leftrightarrow x^2-x-1+2018\left(\sqrt{2x^2+1}-\sqrt{x^2+x+2}\right)=0\)

\(\Leftrightarrow x^2-x-1+2018.\frac{2x^2+1-\left(x^2+x+2\right)}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}=0\)

\(\Leftrightarrow\left(x^2-x-1\right)\left(1+\frac{2018}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}\right)=0\)

\(\Leftrightarrow x^2-x-1=0\)

\(\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)

DD
31 tháng 3 2022

\(A=\frac{2\sqrt{x}-1}{\sqrt{x}-2}=\frac{2\sqrt{x}-4+3}{\sqrt{x}-2}=2+\frac{3}{\sqrt{x}-2}\inℤ\Leftrightarrow\frac{3}{\sqrt{x}-2}\inℤ\)

mà \(x\inℤ\)suy ra \(\sqrt{x}-2\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)

\(\Leftrightarrow x\in\left\{1,9,25\right\}\)