Cho (O) đường kính AB, lấy C thuộc (O), kẻ OH vuông góc BC tại H, tia OH cắt
tiếp tuyến tại B ở E. Gọi D là giao điểm của OE với (O), M là giao điểm của AD
với BC.
b) Chứng minh: EC là tiếp tuyến của (O)
c) Chứng minh: AD là phân giác của CAB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ptđt đi qua 2 điểm \(\left(0;m\right)\)và \(\left(8;0\right)\)là \(y_1=ax+b\)
Khi đó a và b sẽ thỏa mãn \(\hept{\begin{cases}m=0a+b\\0=8a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}m=b\\0=8a+m\end{cases}}\Leftrightarrow\hept{\begin{cases}b=m\\a=\frac{-m}{8}\end{cases}}\)
Vậy Gọi ptđt đi qua 2 điểm \(\left(0;m\right)\)và \(\left(8;0\right)\)là \(y_1=\frac{-m}{8}x+m\)
Gọi ptđt đi qua 2 điểm \(\left(0;m\right)\)và \(\left(10;0\right)\)là \(y_2=a'x+b'\)
Khi đó a và b sẽ thỏa mãn \(\hept{\begin{cases}m=0a'+b'\\0=10a'+b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m=b'\\0=10a'+m\end{cases}}\Leftrightarrow\hept{\begin{cases}b'=m\\a'=\frac{-m}{10}\end{cases}}\)
Vậy Gọi ptđt đi qua 2 điểm \(\left(0;m\right)\)và \(\left(10;0\right)\)là \(y_2=\frac{-m}{10}x+m\)
Cây nến thứ hai có độ cao gấp đôi cây nến thứ nhất \(\Rightarrow y_2=2y_1\)\(\Rightarrow\frac{-m}{10}x+m=2\left(\frac{-m}{8}x+m\right)\)\(\Rightarrow\frac{-m}{10}x+m=\frac{-m}{4}x+2m\)\(\Rightarrow\frac{-x}{10}+1=\frac{-x}{4}+2\)\(\Rightarrow x\left(\frac{1}{4}-\frac{1}{10}\right)=1\)\(\Rightarrow\frac{3}{20}.x=1\)\(\Rightarrow x=\frac{20}{3}=6\frac{2}{3}=6h40m\)
Vậy sau 6 giờ 40 phút thì cây nến thứ hai sẽ có chiều dài gấp đôi cây nến thứ nhất.
\(ab+bc+ca=1\Leftrightarrow ab+bc+ca+a^2=1+a^2\)
\(\Leftrightarrow1+a^2=b\left(a+c\right)+a\left(a+c\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự ta có: \(1+b^2=\left(b+a\right)\left(b+c\right),1+c^2=\left(c+a\right)\left(c+b\right)\)
Suy ra:
\(\frac{a-b}{1+c^2}+\frac{b-c}{1+a^2}+\frac{c-a}{1+b^2}=\frac{a-b}{\left(c+a\right)\left(c+b\right)}+\frac{b-c}{\left(a+b\right)\left(a+c\right)}+\frac{c-a}{\left(b+a\right)\left(b+c\right)}\)
\(=\frac{\left(a-b\right)\left(a+b\right)+\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
`Answer:`
a) \(\left(\sqrt{2}+1\right)x-\sqrt{2}=2\)
\(\Leftrightarrow\left(\sqrt{2}+1\right)x=2+\sqrt{2}\)
\(\Leftrightarrow x=\frac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(\Leftrightarrow x=\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(\Leftrightarrow x=\sqrt{2}\)
b) \(x^4+x^2-6=0\)
\(\Leftrightarrow x^4+3x^2-2x^2-6=0\)
\(\Leftrightarrow x^2.\left(x^2+3\right)-2\left(x^2+3\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2=0\\x^2+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{2}\\x^2=-3\text{(Vô lý)}\end{cases}}}\)
a) \(B=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{a-1}{a-2\sqrt{a}+1}\)
\(B=\left[\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right].\frac{a-2\sqrt{a}+1}{a-1}\)
\(B=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(B=\frac{1}{\sqrt{a}}\)
b) Khi \(a=3-2\sqrt{2}\)thì \(B=\frac{1}{\sqrt{3-2\sqrt{2}}}\)\(=\frac{1}{\sqrt{2-2\sqrt{2}+1}}\)\(=\frac{1}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)\(=\frac{1}{\sqrt{2}-1}\)\(=\sqrt{2}+1\)
khó thế hok trường tiểu học mà giao bài khó thế mình lớp 4 chư bt lm