Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Phương trình đó có vô số nghiệm khi \(\hept{\begin{cases}m^2-1=0\\m+1=0\end{cases}}\Leftrightarrow m=-1\)
\(\Rightarrow\)Chọn A
2) Phương trình đó có nghiệm duy nhất khi \(m^2-1\ne0\Leftrightarrow m\ne\pm1\)
\(\Rightarrow\)Chọn D.
Đặt: \(a=x\); \(b=x-1\)
Khi đó phương trình đã cho có dạng:
\(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow\)\(a^3+b^3=a^3+b^3+3ab.\left(a+b\right)\)
\(\Leftrightarrow\)\(3ab.\left(a+b\right)=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a=0\\b=0\\a+b=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x-1=0\\x+x-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x=1\\x=\frac{1}{2}\end{cases}}\left(TM\right)}\)
Kết luận:....
\(\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-2x+5\right)=0\Leftrightarrow\left(x-2\right)\left(-x+7\right)=0\Leftrightarrow x=2;x=7\)
a, bạn tự vẽ
b, Hoành độ giao điểm tm pt
\(x^2+2x-3=0\)ta có a + b + c = 1 + 2 - 3 = 0
vậy pt có 2 nghiệm x = 1 ; x = -3
với x = 1 => y = 1
với x = -3 => y = 9
Vậy (P) cắt (d) tại A(1;1) ; B(-3;9)
ax + by = 4 (d)
(d) đi qua A(-1;3) <=> -a + 3b = 4 (1)
(d) đi qua B(3;-4) <=> 3a - 4b = 4 (2)
Từ (1) ; (2) suy ra \(\left\{{}\begin{matrix}-a+3b=4\\3a-4b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{28}{5}\\b=\dfrac{16}{5}\end{matrix}\right.\)
Vậy (d) : \(\dfrac{28}{5}x+\dfrac{16}{5}y=4\)
Gọi chiều dài là a (m), hiều rộng là b(m)
Có a+b=140 : 2=70 (m)
Chiều dài sau khi tăng là a+8 (m)
chiều rộng sai khi giảm là b-5 (m)
Có hệ ptr a+b=70 (1)
(a+8)(b-5)=ab (2)
(2) <=> 8b-5a-40=0
<=>8b-5a=40
(1)<=> a=70-b
=> (2) <=> 8b+5b-350=40
<=>13b=390
<=>b=30(m)
=> a=40(m)
<=>43b=390