Trộn dung dịch muối A có nồng độ 20% với dung dịch muối B có nồng độ 5%.Tính khối lượng muối trong mỗi dung dịch?Biết khốt lượng muối của cả hai dung dịch là 12g và khối lượng dung dịch muối B hơn dung dịch muối A là 30g
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔBAC nội tiếp
BC là đường kính
Do đó: ΔBAC vuông tại A
=>BA\(\perp\)AC tại A
Xét (O') có
ΔBAD nội tiếp
BD là đường kính
Do đó: ΔBAD vuông tại A
=>BA\(\perp\)AD tại A
Ta có: BA\(\perp\)AD
BA\(\perp\)AC
mà AC,AD có điểm chung là A
nên C,A,D thẳng hàng
b: Gọi H là giao điểm của AB và O'O
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(1)
Ta có: O'A=O'B
=>O' nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra O'O là đường trung trực của AB
=>O'O\(\perp\)AB tại H và H là trung điểm của AB
Xét ΔOBO' có \(BO^2+BO'^2=O'O^2\left(3^2+4^2=5^2\right)\)
nên ΔOBO' vuông tại B
Xét ΔOBO' vuông tại B có BH là đường cao
nên \(BH\cdot O'O=BO\cdot BO'\)
=>\(BH=3\cdot\dfrac{4}{5}=2,4\left(cm\right)\)
H là trung điểm của AB
=>\(AB=2\cdot2,4=4,8\left(cm\right)\)
O là trung điểm của BC
=>BC=2*BO=2*4=8(cm)
O' là trung điểm của BD
=>BD=2*BO'=2*3=6(cm)
ΔBCD vuông tại B
=>\(S_{BCD}=\dfrac{1}{2}\cdot BC\cdot BD=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
a: Vì OO'=13cm<5cm+12cm
nên (O) cắt (O') tại hai điểm phân biệt
b: Xét ΔOAO' có \(OA^2+O'A^2=OO'^2\left(5^2+12^2=13^2\right)\)
nên ΔOAO' vuông tại A
=>AO\(\perp\)AO' tại A
Xét (O) có
AO là bán kính
AO\(\perp\)AO' tại A
Do đó: AO' là tiếp tuyến của (O) tại A
Xét (O') có
O'A là bán kính
AO\(\perp\)AO'
Do đó: AO là tiếp tuyến của (O') tại A
Gọi \(x>0\left(tấn\right)\) là khối lượng quặng chứa \(75\%\) sắt cần dùng
Khối lượng quặng chứa \(50\%\) sắt sẽ là: \(25-x\left(tấn\right)\)
Khối lượng sắt trong quặng \(75\%:\) \(0,75x\left(tấn\right)\)
Khối lượng sắt trong quặng \(50\%:\) \(0,5\left(25-x\right)\left(tấn\right)\)
Tổng khối lượng sắt trong hỗn hợp cuối cùng: \(25.0,66=16,5\left(tấn\right)\)
Ta có phương trình :
\(0,75x+0,5\left(25-x\right)=16,5\)
\(\Leftrightarrow0,25x=4\)
\(\Leftrightarrow x=16\)
Vậy cần \(16\left(tấn\right)\) quặng chứa \(75\%\) sắt để trộn với \(25-16=9\left(tấn\right)\) quặng chứa \(50\%\) sắt để được \(25\left(tấn\right)\) quặng chứa \(66\%\) sắt
a/
\(\widehat{ACM}=90^o\) (Góc nt chắn nửa đường tròn)
b/
\(\widehat{ABM}=90^o\) (Góc nt chắn nửa đường tròn)
\(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}=90^o\)
Xét tg vuông ABH
\(\widehat{BAH}+\widehat{ABC}=90^o\)
\(\Rightarrow\widehat{BAH}=\widehat{MBC}\)
\(\widehat{MBC}=\widehat{MAC}\) (Góc nt cùng chắn cung MC)
\(\Rightarrow\widehat{BAH}=\widehat{MBC}=\widehat{MAC}\)
Xét tg OAC có
OA = OC = R => tg OAC cân tại O \(\Rightarrow\widehat{MAC}=\widehat{OCA}\) (Góc ở đáy tg cân)
\(\Rightarrow\widehat{BAH}=\widehat{OCA}\)
c/
\(\widehat{ANM}=90^o\) (Góc nt chắn nửa đường tròn) \(\Rightarrow MN\perp AH\)
Mà \(BC\perp AH\left(gt\right)\)
=> MN//BC (Cùng vg với AH)
=> BCMN là hình thang
\(sđ\widehat{BAH}=\dfrac{1}{2}sđcungBN\) (Góc nt đường tròn)
\(sđ\widehat{MAC}=\dfrac{1}{2}sđcungCM\) (Góc nt đường tròn)
Mà \(\widehat{BAH}=\widehat{MAC}\left(cmt\right)\)
\(\Rightarrow sđcungBN=sđcungCM\Rightarrow BN=CM\) (trong đường tròn 2 cung có số đo = nhau thì 2 dây trương cung bằng nhau)
=> BCMN là hình thang cân
\(\widehat{ANM}=90^o\)
Rút y từ 3\(x\) - y = -1 ta có:
y = 1 + 3\(x\)
Thay y = 1 + 3\(x\) vào pt: \(\dfrac{1}{x+1}\) + \(\dfrac{2}{y}\) = 1 ta được:
\(\dfrac{1}{x+1}\) + \(\dfrac{2}{1+3x}\) = 1
Em tự giải nốt
Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\)
nên \(\widehat{B}\simeq53^0\)
a: \(P=\left(\dfrac{2\sqrt{xy}}{x-y}-\dfrac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}-2\sqrt{y}}\right)\cdot\dfrac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(=\left(\dfrac{2\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}\right)\cdot\dfrac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{4\sqrt{xy}-\left(\sqrt{x}+\sqrt{y}\right)^2}{2\cdot\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\dfrac{2\sqrt{x}}{\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\dfrac{-x+2\sqrt{xy}-y}{\left(\sqrt{x}-\sqrt{y}\right)^2}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}=\dfrac{-\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)^2}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
\(=-\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
b: \(\dfrac{x}{y}=\dfrac{4}{9}\)
=>\(\dfrac{x}{4}=\dfrac{y}{9}=k\)
=>x=4k; y=9k
\(P=\dfrac{-\sqrt{x}}{\sqrt{x}+\sqrt{y}}=\dfrac{-\sqrt{4k}}{\sqrt{4k}+\sqrt{9k}}=\dfrac{-2\sqrt{k}}{2\sqrt{k}+3\sqrt{k}}=-\dfrac{2}{5}\)
362 nhé