Cho tam giác $ABC$ có hai đường trung tuyến $BE$ và $CF$ cắt nhau tại $G$. Biết $BE=CF$.
Chứng minh $AG \perp BC$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có .
Ta lại có là giao điểm của và là trọng tâm của tam giác
.
Suy ra .
Chứng minh tương tự ta được .
b) Xét tam giác và tam giác có (chứng minh trên);
(hai góc đối đỉnh);
(chứng minh trên).
Do đó (c.g.c)
(hai cạnh tương ứng).
Theo chứng minh trên (hai góc tương ứng).
Mà và ờ vị trí so le trong nên // .
a) Ta có .
Ta lại có là giao điểm của và là trọng tâm của tam giác
.
Suy ra .
Chứng minh tương tự ta được .
b) Xét tam giác và tam giác có (chứng minh trên);
(hai góc đối đỉnh);
(chứng minh trên).
Do đó (c.g.c)
(hai cạnh tương ứng).
Theo chứng minh trên (hai góc tương ứng).
Mà và ờ vị trí so le trong nên // .
Ta có BF = 2BE (giả thiết).
=>BE = EF.
Mà BE = 2ED nên EF = 2ED.
Do đó ED = DF.
=>D là trung điểm của EF.
Khi đó CD là đường trung tuyến của ∆CEF.
Vì K là trung điểm CF (giả thiết).
Nên EK cũng là đường trung tuyến của ∆CEF.
∆CEF có hai đường trung tuyến CD và EK cắt nhau tại G.
Khi đó G là trọng tâm của ∆CEF.
Vì G là trọng tâm của ∆CEF nên và (tính chất trọng tâm).
Ta có
Suy ra .
Ta có BF = 2BE (giả thiết).
=>BE = EF.
Mà BE = 2ED nên EF = 2ED.
Do đó ED = DF.
=>D là trung điểm của EF.
Khi đó CD là đường trung tuyến của ∆CEF.
Vì K là trung điểm CF (giả thiết).
Nên EK cũng là đường trung tuyến của ∆CEF.
∆CEF có hai đường trung tuyến CD và EK cắt nhau tại G.
Khi đó G là trọng tâm của ∆CEF.
Vì G là trọng tâm của ∆CEF nên và (tính chất trọng tâm).
Ta có
Suy ra .
a) Xét tam giác có là trung điểm của cạnh là trung tuyến của tam giác .
Hơn nữa và là trọng tâm tam giác .
Lại có là đường trung tuyến của tam giác nên thẳng hàng.
b) Ta có là trọng tâm tam giác là đường trung tuyến của tam giác này.
Suy ra đi qua trung điểm của cạnh (điều phài chứng minh).
a) Xét tam giác có là trung điểm của cạnh là trung tuyến của tam giác .
Hơn nữa và là trọng tâm tam giác .
Lại có là đường trung tuyến của tam giác nên thẳng hàng.
b) Ta có là trọng tâm tam giác là đường trung tuyến của tam giác này.
Suy ra đi qua trung điểm của cạnh (điều phài chứng minh).
a)Ta có:
AB = AC ( tam giác ABC cân tại A )
=> 1/2 AB = 1/2 AC hay AE = AD
Xét ΔABD và ΔACE có:
AB = AC(cmt)
góc A chung
AD = AE (cmt)
=> 2Δ bằng nhau
=> BD=CE
b) BD = CE ( cmt )
=> 2/3 BD = 2/3 CE hay GB = GC
=> ΔGBC cân tại G
c) GD+GE = 1/3CD = 1/3CE
Mà BD = CE (cmt)
=> 1/3 BD + 1/3 CE = 2/3 BD = BG
Gọi F là t/đ BC
=> BF = 1/2 BC
Xét tg BGF vuông tại F ( do tg ABC cân => AF vuông góc Bc ):
BG>BF(ch>cgv)
=> GD + GE> 1/2BC
Do là đường trung tuyến (gt)
là trung điểm của
Do là đường trung tuyến (gt)
là trung điểm của
Có : (Do là trung điểm của )
Có : (Do là trung điểm của )
mà (Do cân tại )
Xét và có :
(cmt)
(Do cân tại )
chung
(cạnh - góc - cạnh)
(2 cạnh tương ứng)
và (2 góc tương ứng)
Có :
Có :
mà (cmt), (Do cân tại )
cân tại
Vì G là trọng tâm tam giác ABC nên:
Do đó .
Mặt khác: BG + CG > BC (bất đẳng thức trong tam giác GCB).
Suy ra (điều phải chứng minh).
Lời giải:
Gọi số cán bộ y tế của 3 đội lần lượt là $a,b,c$ (người)
Ta có: $a+b+c=37$
Vì số người tỉ lệ nghịch với số ngày hoàn thành công việc nên:
$5a=4b=6c$
Áp dụng tính chất dãy tỉ số bằng nhau:
$5a=4b=6c=\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{5}+\frac{1}{4}+\frac{1}{6}}=\frac{37}{\frac{37}{60}}=60$
$\Rightarrow a=60:5=12; b=60:4=15; c=60:6=10$
Một công nhân hoàn thành công việc đó trong số ngày là:
12 x 16 = 192 ( ngày )
Để hoàn thành công việc đó trong 8 ngày cần số công nhân là:
192 : 8 = 24 ( công nhân )
Số công nhân cần bổ sung thêm là:
24 - 16 = 8 ( người)
Kết luận :...
a, Xét tam giác ADB và tam giác AEC có :
AE = AD ( gt )
\(\widehat{A}\) chung
AB = AC ( gt )
=> \(\Delta ADB=\Delta AEC\left(c-g-c\right)\)
b, Do \(\Delta ADB=\Delta AEC\) ( câu a, )
=> \(\widehat{ABD}=\widehat{ACE}\) ( 2 góc tương ứng )
BD nằm giữa 2 tia EB và EC
=> \(\widehat{EBD}+\widehat{CBD}=\widehat{B}\)
\(\Rightarrow\widehat{CBD}=\widehat{B}-\widehat{EBD}\) ( 1 )
CE nằm giữa 2 tia CD và CB
\(\Rightarrow\widehat{BCE}+\widehat{DCE}=\widehat{C}\)
\(\Rightarrow\widehat{BCE}=\widehat{C}-\widehat{DCE}\) ( 2 )
Từ ( 1 ) và ( 2 )
=> \(\widehat{CBD}=\widehat{BCE}\) hay \(\widehat{IBC}=\widehat{ICB}\)
Xét tam giác IBC có
\(\widehat{IBC}=\widehat{ICB}\)
=> tam giác IBC cân tại I
c, Xét tam giác AED có :
AE = AD ( gt )
=> Tam giác AED cân tại A
=> \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)( 3 )
Tam giác ABC cân tại A
=> \(\widehat{B}=\dfrac{180^0-\widehat{A}}{2}\) ( 4 )
Từ ( 3 ) , ( 4) => \(\widehat{AED}=\widehat{B}\)
Đường thẳng AB bị 2 đường thẳng ED và BC cắt tạo thành cặp góc đồng vị bằng nhau \(\widehat{AED}=\widehat{B}\)
=> ED // BC ( đpcm)
Gọi �D là giao điểm của ��AG và ��⇒��=��BC⇒DB=DC.
Ta có ��=23��BG=32BE; ��=23��CG=32CF (tính chất trọng tâm).
Vì ��=��BE=CF nên ��=��⇒△���BG=CG⇒△BCG cân tại �G
⇒���^=���^⇒GCB=GBC
Xét △���△BFC và △���△CEB có ��=��CF=BE (giả thiết);
���^=���^GCB=GBC (chứng minh trên);
��BC là cạnh chung.
Do đó △���=△���△BFC=△CEB (c.g.c)
⇒���^=���^⇒FBC=ECB (hai góc tưong ứng)
⇒△���⇒△ABC cân tại �⇒��=��A⇒AB=AC.
Từ đó suy ra △���=△���△ABD=△ACD (c.c.c)
⇒���^=���^⇒ADB=ADC. (hai góc tương ứng)
Mà ���^+���^=180∘⇒���^=���^=90∘⇒��⊥��ADB+ADC=180∘⇒ADB=ADC=90∘⇒AD⊥BC hay ��⊥��AG⊥BC.
a)�)
Ta có : BE là đường trung tuyến cạnh ACTa có : BE là đường trung tuyến cạnh AC
và : CF là đường trung tuyến cạnh ABvà : CF là đường trung tuyến cạnh AB
⇒AB=AC⇒ΔABCcân tạiA⇒��=��⇒Δ���cân tại�
Nối AGNối AG
Xét ΔABC có BE và CF là 2 đường trung tuyến cắt nhau tại GXét ΔABC có BE và CF là 2 đường trung tuyến cắt nhau tại G
⇒G là trọng tâm ΔABC⇒G là trọng tâm ΔABC
và : AG là đường trung tuyến ứng với cạnh BCvà : AG là đường trung tuyến ứng với cạnh BC
ΔABC cân tại A nên đường trung tuyến AG cũng là đường cao => AG ⊥ BCΔABC cân tại A nên đường trung tuyến AG cũng là đường cao => AG ⊥ BC