K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2022

TL

= 1111

~HT~

8 tháng 1 2022

Học dốt mà lớp 12 là 4 chữ số thôi

Đề thi đánh giá năng lực

8 tháng 1 2022

B (2;3;-7)

8 tháng 1 2022

g=dễ

còn non

8 tháng 1 2022

hỏi lắm thế

8 tháng 1 2022

cho năm năm

8 tháng 1 2022

Gọi H chân đường kẻ từ A của lăng trụ

Khi đó A'H là là hình chiếu của AA' trên mp

Xét tam giác AA'H vuông tại H có : \(SinA'=\frac{AH}{AA'}\)

\(AH=AA'.SinA'=AA'.Sin60^o=\frac{b\sqrt{3}}{2}\)

Do tam giác A'B'C' là tam giác đều nên chiều cao của tam giác : \(\frac{a\sqrt{3}}{2}\)

Thể tích ABC.A'B'C' : V = \(\frac{1}{3}\). AH . \(S_{A'B'C'}=\frac{3}{8}\)\(a^2b\)

Đáp án đó

8 tháng 1 2022

Từ đồ thị (H.1, H.2) hãy chỉ ra các khoảng tăng, giảm của hàm số y = cosx trên đoạn [–π2;3π2][–π2;3π2] và các hàm số y = |x| trên khoảng (-∞; +∞).

8 tháng 1 2022

đấy là câu hỏi ạ

8 tháng 1 2022

dùng máy tính hay dt

8 tháng 1 2022

ko đang dúng máy tinh hay dt

8 tháng 1 2022

ò đây là câu trả lời

4 tháng 1 2022
Tự trả lời vậy mà còn hỏi :-)
3 tháng 1 2022

<666> ma trong olm 3 sáng 

29 tháng 12 2021

1. Định nghĩa

Hàm số mũ là hàm số có dạng y= ax, hàm số lôgarit là hàm số có dạng  y = logax ( với cơ số a dương khác 1).

2. Tính chất của hàm số mũ y= ax (a>0,a≠1)(a>0,a≠1).

- Tập xác định: RR.

- Đạo hàm: ∀x∈R,y′=axlna∀x∈R,y′=axln⁡a.

- Chiều biến thiên          

+) Nếu a>1a>1 thì hàm số luôn đồng biến

+) Nếu 0<a<10<a<1 thì hàm số luôn nghịch biến

- Tiệm cận: trục Ox là tiệm cận ngang.

- Đồ thị nằm hoàn toàn về phía trên trục hoành (  y= ax  > 0, ∀x), và luôn cắt trục tung tại điểm (0;1)(0;1) và đi qua điểm (1;a)(1;a).

3. Tính chất của hàm số lôgarit y = logax (a>0,a≠1)(a>0,a≠1).

- Tập xác định: (0;+∞)(0;+∞).

- Đạo hàm ∀x∈(0;+∞),y′=1xlna∀x∈(0;+∞),y′=1xln⁡a.

- Chiều biến thiên:  

+) Nếu a>1a>1 thì hàm số luôn đồng biến

+) Nếu 0<a<10<a<1 thì hàm số luôn nghịch biến

- Tiệm cận: Trục Oy là tiệm cận đứng.

- Đồ thị nằm hoàn toàn phía bên phải trục tung, luôn cắt trục hoành tại điểm (1;0)(1;0) và đi qua điểm (a;1)(a;1).

4. Chú ý 

- Nếu a>1a>1 thì lna>0ln⁡a>0, suy ra (ax)′>0∀x(ax)′>0∀x và (logax) > 0, ∀x > 0; 

do đó hàm số mũ và hàm số lôgarit với cơ số lớn hơn 1 đều là những hàm số luôn luôn đồng biến.

Tương tự, nếu 0<a<10<a<1 thì lna<0ln⁡a<0, (ax) < 0 và (logax) < 0, ∀x > 0; hàm số mũ và hàm số lôgarit với cơ số nhỏ hơn 1 đều là những hàm số luôn luôn nghịch biến.

- Công thức đạo hàm của hàm số lôgarit có thể mở rộng thành

(ln|x|)′=1x,∀x≠0(ln⁡|x|)′=1x,∀x≠0 và (loga|x|) = 1xlna1xln⁡a, ∀x≠≠ 0.