E=2x^2+4x+13
F=2x^2-3x+6
Giúp t cần gấp ạ^^
Chứng minh các biểu thức sau luôn nhận giá trị dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔMNP vuông tại M
=>\(\widehat{MNP}+\widehat{P}=90^0\)
=>\(\widehat{N}=90^0-45^0=45^0\)
Xét ΔMNP vuông tại M có \(tanP=\dfrac{MN}{MP}\)
=>\(\dfrac{10}{MP}=tan45=1\)
=>MP=10(cm)
ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(NP=\sqrt{10^2+10^2}=10\sqrt{2}\left(cm\right)\)
\(5^2\cdot x-2^4\cdot x=3^4-6\cdot3^2\\ \Rightarrow25x-16x=81-6\cdot9\\ \Rightarrow9x=81-54\\ \Rightarrow9x=27\\ \Rightarrow x=27:9\\ \Rightarrow x=3\)
\(5^2\cdot x-2^4\cdot x=3^4-6\cdot3^2\)
=>\(25x-16x=81-6\cdot9=81-54=27\)
=>9x=27
=>x=3
a: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có
\(\widehat{EAH}\) chung
Do đó: ΔAEH~ΔAHB
=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)
=>\(AH^2=AE\cdot AB\left(1\right)\)
Xét ΔAFH vuông tại F và ΔAHC vuông tại H có
\(\widehat{FAH}\) chung
Do đó: ΔAFH~ΔAHC
=>\(\dfrac{AF}{AH}=\dfrac{AH}{AC}\)
=>\(AH^2=AF\cdot AC\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
b: Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>\(HA^2=HE^2+HF^2\)
Xét ΔEHA vuông tại H và ΔEBH vuông tại E có
\(\widehat{EHA}=\widehat{EBH}\left(=90^0-\widehat{HAE}\right)\)
Do đó: ΔEHA~ΔEBH
=>\(\dfrac{EH}{EB}=\dfrac{EA}{EH}\)
=>\(EH^2=EA\cdot EB\)
Xét ΔFHA vuông tại F và ΔFCH vuông tại F có
\(\widehat{FHA}=\widehat{FCH}\left(=90^0-\widehat{HAC}\right)\)
Do đó: ΔFHA~ΔFCH
=>\(\dfrac{FH}{FC}=\dfrac{FA}{FH}\)
=>\(FH^2=FA\cdot FC\)
\(HA^2=HE^2+HF^2=EA\cdot EB+FA\cdot FC\)
`139 . 19 + 19 - 40 . 19`
`= 139 . 19 + 19 . 1 - 40 . 19`
`= 19 . (139 + 1 - 40) `
`= 19 . 100`
` = 1900`
139.19 + 19 - 40.9
= 19.( 139 + 1 - 40)
= 19.100
= 1900
Mik nghĩ thế đúng và nhanh òi ~~~ sai thì cho mik xin lỗi nho
Điều kiện: `x > 0`
Trong 1 giờ, cả hai vòi chảy được:
`1 : 24 = 1/24` (bể)
Trong 1 giờ, vòi 1 chảy được:
`1 : x = 1/x` (bể)
Trong 1 giờ, vỏi 2 chảy được:
`1/24 - 1/x` (bể)
Do vòi thứ nhất chảy 3h, vòi thứ hai chảy 6h thì được `1/3` bể, ta có phương trình:
`3 . 1/x + 6 . (1/24 - 1/x) = 1/3 `
`<=> 3/x + 1/4 - 6/x = 1/3`
`<=> -3/x = 1/3 - 1/4`
`<=> -3/x = 1/12`
`<=> x = -36` (Không thỏa mãn)
Vậy không tồn tại `x `
Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\left(bể\right)\)
Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{24}\left(bể\right)\)
Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{24}-\dfrac{1}{x}\left(bể\right)\)
Trong 3 giờ, vòi 1 chảy được: \(\dfrac{3}{x}\left(bể\right)\)
Trong 6 giờ, vòi 2 chảy được: \(6\left(\dfrac{1}{24}-\dfrac{1}{x}\right)=\dfrac{1}{4}-\dfrac{6}{x}\left(bể\right)\)
a: ABCD là hình thoi
=>AC\(\perp\)BD tại trung điểm của mỗi đường
=>AC\(\perp\)BD tại I
Xét tứ giác AIBM có
K là trung điểm chung của AB và IM
=>AIBM là hình bình hành
Hình bình hành AIBM có \(\widehat{AIB}=90^0\)
nên AIBM là hình chữ nhật
(3x-5)(2y+7)=100
=>(3x-5;2y+7)\(\in\){(1;100);(100;1);(-1;-100);(-100;-1);(2;50);(50;2);(-2;-50);(-50;-2);(4;25);(25;4);(-4;-25);(-25;-4);(5;20);(20;5);(-5;-20);(-20;-5);(10;10);(-10;-10)}
=>(3x;2y)\(\in\){(6;93);(105;-6);(4;-107);(-95;-8);(7;43);(55;-5);(3;-57);(-45;-9);(9;18);(30;-3);(1;-32);(-20;-11);(10;13);(25;-2);(0;-27);(-15;-12);(15;3);(-5;-17)}
=>(x;y)\(\in\){(2;93/2);(35;-3);(4/3;-107/2);(-95/3;-4);(7/3;43/2);(55/3;-5/2);(1;-57/2);(-15;-9/2);(3;9);(10;-3/2);(1/3;-16);(-20/3;-11/2);(10/3;13/2);(25/3;-1);(0;-27/2);(-5;-6);(5;3/2);(-5/3;-17/2)}
(3x - 5)(2y + 7) = 100
Ta có: 100 = 1 x 100 = 2 x 50 = 4 x 25
Do 2y + 7 là số lẻ nên 2y + 7 chỉ có thể = 1 hoặc 25
Trường hợp 1: 2y + 7 = 1
⇒ 2y = 1 - 7
⇒ 2y = -6
⇒ y = (-6) : 2
⇒ y = -3
Vậy 3x - 5 = 100
⇒ 3x = 100 + 5
⇒ 3x = 105
⇒ x = 105 : 3
⇒ x = 35
Trường hợp 2: 2y + 7 = 25
⇒ 2y = 25 - 7
⇒ 2y = 18
⇒ y = 18 : 2
⇒ y = 9
Vậy 3x - 5 = 4
⇒ 3x = 4 + 5
⇒ 3x = 9
⇒ x = 9 : 3
⇒ x = 3
Vậy (x; y) ϵ {(35; -3); (3; 9)}
\(E=2x^2+4x+13\)
\(=2\left(x^2+2x+\dfrac{13}{2}\right)\)
\(=2\left(x^2+2x+1+\dfrac{11}{2}\right)\)
\(=2\left(x+1\right)^2+11>=11>0\forall x\)
\(F=2x^2-3x+6\)
\(=2\left(x^2-\dfrac{3}{2}x+3\right)\)
\(=2\left(x^2-2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{39}{16}\right)\)
\(=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{39}{8}>=\dfrac{39}{8}>0\forall x\)
E=2x2+4x+13
E=2(x2+2x+1)+11
E=2(x+1)2+11
2(x+1)2≥0,∀x
⇒2(x+1)2+11 lớn hơn 0 ∀x
⇒E luôn nhân giá trị dương
F=2x2-3x+6
2F=4x2-6x+12
2F=(4x2-6x+\(\dfrac{9}{4}\))+\(\dfrac{15}{4}\)
2F=(2x+\(\dfrac{3}{2}\))2+\(\dfrac{15}{4}\)
F=\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)+\(\dfrac{15}{8}\)
\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)≥0,∀x
⇒\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)+\(\dfrac{15}{8}\) lớn hơn 0 ∀x
⇒F luôn nhận giá trị dương