Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dung... ta có
3x-2y/5=3x-1/4=(3x-2y+3x-1)/4+5=2y-1/9
=>2y-1/9=2y+5/7
=>(2y-1).7=(2y+5).9
=>14y-7=18y+45
=>y=-13
Thay vào,tìm x
Ko chac dung ko
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
\(x:y:z=3:4:5\\ \Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)
\(2x^2+2y^2-3x^2=100\\ \Rightarrow2\left(3k\right)^2+2\left(4k\right)^2-3\left(3k\right)^2=100\\ \Rightarrow18k^2+32k^2-27k^2=100\\ \Rightarrow\left(18+32-27\right)k^2=100\\ \Rightarrow23k^2=100\\ \Rightarrow k^2=77\\ \Rightarrow k=\sqrt{77}\\ \left\{{}\begin{matrix}x=3\sqrt{77}\\y=4\sqrt{77}\\z=5\sqrt{77}\end{matrix}\right.\)
(3x-5)(2y+7)=100
=>(3x-5;2y+7)\(\in\){(1;100);(100;1);(-1;-100);(-100;-1);(2;50);(50;2);(-2;-50);(-50;-2);(4;25);(25;4);(-4;-25);(-25;-4);(5;20);(20;5);(-5;-20);(-20;-5);(10;10);(-10;-10)}
=>(3x;2y)\(\in\){(6;93);(105;-6);(4;-107);(-95;-8);(7;43);(55;-5);(3;-57);(-45;-9);(9;18);(30;-3);(1;-32);(-20;-11);(10;13);(25;-2);(0;-27);(-15;-12);(15;3);(-5;-17)}
=>(x;y)\(\in\){(2;93/2);(35;-3);(4/3;-107/2);(-95/3;-4);(7/3;43/2);(55/3;-5/2);(1;-57/2);(-15;-9/2);(3;9);(10;-3/2);(1/3;-16);(-20/3;-11/2);(10/3;13/2);(25/3;-1);(0;-27/2);(-5;-6);(5;3/2);(-5/3;-17/2)}
(3x - 5)(2y + 7) = 100
Ta có: 100 = 1 x 100 = 2 x 50 = 4 x 25
Do 2y + 7 là số lẻ nên 2y + 7 chỉ có thể = 1 hoặc 25
Trường hợp 1: 2y + 7 = 1
⇒ 2y = 1 - 7
⇒ 2y = -6
⇒ y = (-6) : 2
⇒ y = -3
Vậy 3x - 5 = 100
⇒ 3x = 100 + 5
⇒ 3x = 105
⇒ x = 105 : 3
⇒ x = 35
Trường hợp 2: 2y + 7 = 25
⇒ 2y = 25 - 7
⇒ 2y = 18
⇒ y = 18 : 2
⇒ y = 9
Vậy 3x - 5 = 4
⇒ 3x = 4 + 5
⇒ 3x = 9
⇒ x = 9 : 3
⇒ x = 3
Vậy (x; y) ϵ {(35; -3); (3; 9)}