K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading... 

0
26 tháng 11 2023

\(2x^2+3xy+y^2+5x+3y=15\)

\(\Leftrightarrow y^2+3\left(x+1\right)y+2x^2+5x-15=0\)

\(\Delta=\left[3\left(x+1\right)\right]^2-4\left(2x^2+5x-15\right)\)

\(=9x^2+18x+9-8x^2-20x+60\)

\(=x^2-2x+69=\left(x-1\right)^2+68\ge68>0\) nên pt (*) luôn có nghiệm thực.

Do đó \(y=\dfrac{-3\left(x+1\right)\pm\sqrt{x^2-2x+69}}{2}\)

Vì y là số nguyên nên \(x^2-2x+69\) là số chính phương. Đặt \(x^2-2x+69=k^2\)  \(\left(k\inℕ,k\ge9\right)\)

\(\Leftrightarrow\left(x-1\right)^2+68=k^2\)

\(\Leftrightarrow\left(k-x+1\right)\left(k+x-1\right)=68\)

Ta có bảng sau:

\(k-x+1\) 1 2 4 17 34 68 -1 -2 -4 -17 -34 -68
\(k+x-1\) 68 34 17 4 2 1 -68 -34 -17 -4 -2 -1
\(k\) \(\dfrac{69}{2}\) (loại) 18 \(\dfrac{21}{2}\) (loại) \(\dfrac{21}{2}\) (loại) 18 \(\dfrac{69}{2}\)(loại) \(-\dfrac{69}{2}\)(loại) -18 \(-\dfrac{21}{2}\)(loại) \(-\dfrac{21}{2}\)(loại)  -18 \(-\dfrac{69}{2}\)(loại)
\(x\)   17     -15     -15     17  
\(y\)   -18 hoặc -36     30 hoặc 12     tương tự TH thứ 5     tương tự TH thứ 2  

Thử lại, ta thấy pt đã cho có các nghiệm nguyên sau:

 (17; -18), (17; -36), (15; 30), (15; 12)

26 tháng 11 2023

Chỗ KQ mình sửa lại thành dấu "-" như thế này nhé

* Với dạng bài này, bạn giải bằng cách bình phương cả 2 vế nhé, nhớ đặt điều kiện xác định để phương trình có nghĩa(là để căn ko âm đấy) và đối chiếu x tìm được với ĐK.

a) \(\sqrt{ }\)16x = 8 (ĐKXĐ: x\(\ge\) 0)

\(\Leftrightarrow\) 16x =64

\(\Leftrightarrow\) x = 4 (thỏa mãn ĐKXĐ)

Vậy x=4 (đối với đề bài yêu cầu tìm x)

Vậy phương trình có nghiệm là x=4 (đối với đề bài yêu cầu giải phương trình). Cái này đề bài yêu cầu gì thì bạn KL theo cách mà mình nói nhé.

b) \(\sqrt{ }\)4x = \(\sqrt{ }\)5 (ĐKXĐ: x\(\ge\) 0)
\(\Leftrightarrow\) 4x = 5

\(\Leftrightarrow\) x =5/4 (thỏa mãn ĐKXĐ)

Vậy...
c) \(\sqrt{x-1}\) = 21 (ĐKXĐ: x\(\ge\) 1)

\(\Leftrightarrow\) x-1 = 441

\(\Leftrightarrow\) x = 442 (thỏa mãn ĐKXĐ)

Vậy...


 

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

$\frac{2}{ab}+\frac{3}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{a^2+b^2}+\frac{1}{a^2+b^2}$

$\geq \frac{(1+1+1+1+1+1+1)^2}{2ab+2ab+2ab+2ab+a^2+b^2+a^2+b^2+a^2+b^2}=\frac{49}{8ab+3(a^2+b^2)}$

$=\frac{49}{3(a+b)^2+2ab}\geq \frac{49}{3(a+b)^2+\frac{(a+b)^2}{2}}=\frac{49}{3+\frac{1}{2}}=14$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{2}$

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:
Áp dụng BĐT AM-GM:
$2A=2x^2y^2(x^2+y^2)=xy.[2xy(x^2+y^2)]\leq \left(\frac{x+y}{2}\right)^2.\left(\frac{2xy+x^2+y^2}{2}\right)^2$

$\Leftrightarrow 2A\leq \frac{(x+y)^6}{16}=\frac{1}{16}$

$\Rightarrow A\leq \frac{1}{32}$
Vậy $A_{\max}=\frac{1}{32}$. Giá trị này đạt được khi $x=y=\frac{1}{2}$

25 tháng 11 2023

a, Để đt (d) đi qua A thì tọa độ điểm A phải thỏa mãn phương trình đường thẳng (d)

Thay tọa độ điểm A vào phương trình đường thẳng (d) ta có:

             2.(-2) + m - 3 = 3

             -4 + m - 3 = 3

                    m = 3 + 3 + 4

                    m = 10 

b, đt (d) cắt trục tung tại đểm có tọa độ bằng - 3 khi và chỉ khi:

      2.0 + m - 3 = -3

                m - 3 = - 3

                m = 0

 

          

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

25 tháng 11 2023

7\(x^2\) - 24y2 = 41

Nếu \(x\) ⋮ 3 ⇒ 7\(x^2\) - 24y2 ⋮ 3 ⇒ 41 ⋮ 3 (vô lý loại)

Nếu \(x\) không chia hết cho 3

⇒ \(x^2\) = 3k + 1(theo tính chất của số chính phương số chính phương chia 3 chỉ có thể dư 1 hoặc không dư)

Thay \(x^2\) = 3k + 1 vào biểu thức 7\(x^2\) - 24y2 ta có: 

    7.(3k + 1) - 24y2 = 41

⇒ 21k + 7 - 24y2 = 41

    21k - 24y2 = 41 - 7

    3.(7k - 8y2) = 34 ⇒ 34 ⋮ 3 (vô lý loại)

Vậy không có giá trị nguyên nào của \(x\) thỏa mãn phương trình hay phương trình đã cho không có nghiệm nguyên (đpcm)

 

 

 

 

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

$7x^2-24y^2=41$

$\Rightarrow 7x^2=41+24y^2\equiv 41\equiv 2\pmod 3(1)$
Nếu $x$ nguyên thì $x^2$ là scp. Ta biết 1 scp khi chia 3 dư $0,1$

$\Rightarrow x^2\equiv 0,1\pmod 3$

$\Rightarrow 7x^2\equiv 0, 7\equiv 0,1\pmod 3$
Nghĩa là $7x^2$ chia 3 dư $0$ hoặc $1$ (2)

$(1); (2)$ mâu thuẫn nhau nên pt không có nghiệm nguyên.

 

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

$7x^2-24y^2=41$

$\Rightarrow 7x^2=41+24y^2\equiv 41\equiv 2\pmod 3(1)$
Nếu $x$ nguyên thì $x^2$ là scp. Ta biết 1 scp khi chia 3 dư $0,1$

$\Rightarrow x^2\equiv 0,1\pmod 3$

$\Rightarrow 7x^2\equiv 0, 7\equiv 0,1\pmod 3$
Nghĩa là $7x^2$ chia 3 dư $0$ hoặc $1$ (2)

$(1); (2)$ mâu thuẫn nhau nên pt không có nghiệm nguyên.

 

25 tháng 11 2023

 Cách khác (xét theo mod 8): Giả sử tồn tại 2 số nguyên x, y thỏa mãn \(7x^2-24y^2=41\) 

\(\Leftrightarrow7x^2-24y^2=48-7\)

\(\Leftrightarrow7\left(x^2+1\right)=24\left(y^2+2\right)\) (*)

 Do \(\left(7,24\right)=1\) nên từ (*), ta có \(x^2+1⋮24\) \(\Rightarrow x^2+1⋮8\)

 Từ đó x phải là số lẻ. Nhưng nếu như vậy thì \(x^2\equiv1\left[8\right]\) dẫn đến \(x^2+1\equiv2\left[8\right]\), vô lí.

 Vậy điều giả sử là sai \(\Rightarrow\) pt đã cho không có nghiệm nguyên.