K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

$7x^2-24y^2=41$

$\Rightarrow 7x^2=41+24y^2\equiv 41\equiv 2\pmod 3(1)$
Nếu $x$ nguyên thì $x^2$ là scp. Ta biết 1 scp khi chia 3 dư $0,1$

$\Rightarrow x^2\equiv 0,1\pmod 3$

$\Rightarrow 7x^2\equiv 0, 7\equiv 0,1\pmod 3$
Nghĩa là $7x^2$ chia 3 dư $0$ hoặc $1$ (2)

$(1); (2)$ mâu thuẫn nhau nên pt không có nghiệm nguyên.

 

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

$7x^2-24y^2=41$

$\Rightarrow 7x^2=41+24y^2\equiv 41\equiv 2\pmod 3(1)$
Nếu $x$ nguyên thì $x^2$ là scp. Ta biết 1 scp khi chia 3 dư $0,1$

$\Rightarrow x^2\equiv 0,1\pmod 3$

$\Rightarrow 7x^2\equiv 0, 7\equiv 0,1\pmod 3$
Nghĩa là $7x^2$ chia 3 dư $0$ hoặc $1$ (2)

$(1); (2)$ mâu thuẫn nhau nên pt không có nghiệm nguyên.

 

25 tháng 11 2023

 Cách khác (xét theo mod 8): Giả sử tồn tại 2 số nguyên x, y thỏa mãn \(7x^2-24y^2=41\) 

\(\Leftrightarrow7x^2-24y^2=48-7\)

\(\Leftrightarrow7\left(x^2+1\right)=24\left(y^2+2\right)\) (*)

 Do \(\left(7,24\right)=1\) nên từ (*), ta có \(x^2+1⋮24\) \(\Rightarrow x^2+1⋮8\)

 Từ đó x phải là số lẻ. Nhưng nếu như vậy thì \(x^2\equiv1\left[8\right]\) dẫn đến \(x^2+1\equiv2\left[8\right]\), vô lí.

 Vậy điều giả sử là sai \(\Rightarrow\) pt đã cho không có nghiệm nguyên.

 

 

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

25 tháng 11 2023

7\(x^2\) - 24y2 = 41

Nếu \(x\) ⋮ 3 ⇒ 7\(x^2\) - 24y2 ⋮ 3 ⇒ 41 ⋮ 3 (vô lý loại)

Nếu \(x\) không chia hết cho 3

⇒ \(x^2\) = 3k + 1(theo tính chất của số chính phương số chính phương chia 3 chỉ có thể dư 1 hoặc không dư)

Thay \(x^2\) = 3k + 1 vào biểu thức 7\(x^2\) - 24y2 ta có: 

    7.(3k + 1) - 24y2 = 41

⇒ 21k + 7 - 24y2 = 41

    21k - 24y2 = 41 - 7

    3.(7k - 8y2) = 34 ⇒ 34 ⋮ 3 (vô lý loại)

Vậy không có giá trị nguyên nào của \(x\) thỏa mãn phương trình hay phương trình đã cho không có nghiệm nguyên (đpcm)

 

 

 

 

AH
Akai Haruma
Giáo viên
10 tháng 7 2021

Lời giải:

Giả sử pt đã có nghiệm nguyên.
Ta biết rằng 1 số chính phương khi chia 4 dư $0,1$

Mà $x^2+y^2+z^2=2015\equiv 3\pmod 4$ nên $(x^2,y^2,z^2)$ chia $4$ dư $1,1,1$. Do đó $x,y,z$ đều lẻ.

Đặt $x=2m+1; y=2n+1, z=2p+1$ với $m,n,p$ nguyên

$x^2+y^2+z^2=2015$

$\Leftrightarrow (2m+1)^2+(2n+1)^2+(2p+1)^2=2015$

$\Leftrightarrow 4m(m+1)+4n(n+1)+4p(p+1)=2012$

$\Leftrightarrow m(m+1)+n(n+1)+p(p+1)=503$

Điều này vô lý vì mỗi số $m(m+1), n(n+1), p(p+1)$ đều chẵn.

Vậy điều giả sử sai, hay pt đã cho không có nghiệm nguyên.

22 tháng 9 2017

tk nha 

22 tháng 9 2017

là sao

Ta có: \(\left(x-2\right)\left(x^2-7x+41\right)=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

Thay x=2 vào (2), ta được:

\(2^2-2m+m^2-5m+8=0\)

\(\Leftrightarrow m^2-7m+12=0\)

\(\Leftrightarrow\left(m-3\right)\left(m-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=4\end{matrix}\right.\)

Vậy: Có 2 giá trị nguyên của m thỏa mãn hai phương trình có nghiệm chung