K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...

0

3
6 tháng 9 2023

ĐKXĐ: \(a\ne4\)

a) \(C=\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)

\(=\left[\dfrac{\left(2+\sqrt{a}\right)^2-\left(2-\sqrt{a}\right)^2}{\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)}+\dfrac{4a}{4-a}\right]:\left[\dfrac{2\sqrt{a}-\sqrt{a}-3}{\sqrt{a}\left(2-\sqrt{a}\right)}\right]\)

\(=\dfrac{4+4\sqrt{a}+a-4+4\sqrt{a}-a+4a}{\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)}.\dfrac{\sqrt{a}\left(2-\sqrt{a}\right)}{\sqrt{a}-3}\)

\(=\dfrac{4a+8\sqrt{a}}{\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)}.\dfrac{\sqrt{a}\left(2-\sqrt{a}\right)}{\sqrt{a}-3}\)

\(=\dfrac{4\sqrt{a}\left(\sqrt{a}+2\right).\sqrt{a}\left(2-\sqrt{a}\right)}{\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{4a}{\sqrt{a}-3}\)

6 tháng 9 2023

Biểu thức B là biểu thức nào vậy em?

0
5 tháng 9 2023

1) \(y=mx+1\left(m\ne0\right)\left(1\right)\) hay \(mx-y+1=0\)

Để đồ thị hàm số \(\left(1\right)\) đi qua điểm \(M\left(-1;-1\right)\) khi và chỉ khi

\(m.\left(-1\right)+1=-1\)

\(\Leftrightarrow-m=-2\)

\(\Leftrightarrow m=2\)

Vậy hàm số \(\left(1\right):y=2x+1\)

Bạn tự vẽ đồ thị nhé!

2) \(y=\left(m^2-2\right)x+2m+3\left(d\right)\)

Để \(\left(1\right)//\left(d\right)\) khi và chỉ khi

\(\left\{{}\begin{matrix}m^2-2=2\\2m+3\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\2m\ne-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne-1\end{matrix}\right.\) \(\Leftrightarrow m=\pm2\) thỏa đề bài

3) Khoảng cách từ gốc O đến đồ thị hàm số \(\left(1\right)\) là:

\(d\left(O;\left(1\right)\right)=\dfrac{m.0-0+1}{\sqrt[]{2^2+1^2}}=\dfrac{2}{\sqrt[]{5}}\)

\(\Leftrightarrow\dfrac{0.m+1}{\sqrt[]{5}}=\dfrac{2}{\sqrt[]{5}}\)

\(\Leftrightarrow0m=1\)

\(\Leftrightarrow m\in\varnothing\)

Vậy không có giá trị nào của m để thỏa mãn đề bài,

5 tháng 9 2023

Đáp án:

1. Tìm m để đồ thị hàm số (1) đi qua điểm M (−1;−1). Với m tìm được, vẽ đồ thị hàm số (1) trên mặt phẳng tọa độ Oxy

Để đồ thị hàm số (1) đi qua điểm M (−1;−1), ta cần có m(−1)+1=−1. Từ đó ta có m=−2.

Với m=−2, đồ thị hàm số (1) là một đường thẳng có hệ số góc -2 và đi qua điểm M (−1;−1). Ta có thể vẽ đồ thị hàm số như sau:

[Image of the graph of y=-2x+1]

2. Tìm giá trị của m để đồ thị hàm số (1) song song với đường thẳng y (m² - 2) x + 2m+3 =

Hai đường thẳng song song khi hệ số góc của chúng bằng nhau. Do đó, ta có m=m2−2. Từ đó ta có m=2.

3. Tìm m để khoảng cách từ gốc O đến đồ thị hàm số (1) bằng 2 √5

Khoảng cách từ gốc O đến đồ thị hàm số (1) là khoảng cách từ điểm (0;1) đến đường thẳng y=mx+1. Khoảng cách này được tính theo công thức:

 

d=|m|

Do đó, ta có d=2552=2.

Từ đó, ta có m=2.

Kết luận:

  • Giá trị của m để đồ thị hàm số (1) đi qua điểm M (−1;−1) là m=-2.
  • Giá trị của m để đồ thị hàm số (1) song song với đường thẳng y (m² - 2) x + 2m+3 = là m=2.
  • Giá trị của m để khoảng cách từ gốc O đến đồ thị hàm số (1) bằng 2 √5 là m=2.

Lưu ý:

  • Để giải bài toán 1 và 2, ta có thể thay m=-2 vào hàm số (1) và so sánh với tọa độ của điểm M (−1;−1) hoặc tọa độ của một điểm bất kỳ trên đường thẳng y (m² - 2) x + 2m+3 =.
  • Để giải bài toán 3, ta có thể sử dụng công thức tính khoảng cách từ một điểm đến một đường thẳng.

chúc bạn học tốt

5 tháng 9 2023

Trên tia đối của tia \(AM\) lấy \(I\) sao cho: \(AI=CE\)

Xét \(\Delta ADI\) và \(\Delta CDE\) có:

\(AD=CD\left(gt\right)\)

\(\widehat{DAI}=\widehat{DCE}=90^o\)

\(AI=CE\left(gt\right)\)

Vậy \(\Delta ADI=\Delta CDE\left(c.g.c\right)\)

\(\Leftrightarrow\widehat{IDA}=\widehat{EDC}\) ( 2 góc t/ứng )

\(\Leftrightarrow\widehat{AID}=\widehat{CED}\) ( 2 góc t/ứng )

\(\Leftrightarrow\) \(\widehat{CED}=\widehat{ADE}\) mà 2 góc này ở vị trí so le trong ( do \(AD//BC\) )

\(\Rightarrow\widehat{AID}=\widehat{ADE}\left(1\right)\)

Ta có: \(\widehat{ADE}=\widehat{ADM}+\widehat{MDE}\left(2\right)\)

Vì \(\widehat{MDE}=\widehat{EDC}\)

\(\Rightarrow\widehat{MED}=\widehat{IDA}\left(3\right)\)

Từ \(\left(2\right);\left(3\right)\Rightarrow\widehat{ADE}=\widehat{ADM}+\widehat{IDA}=\widehat{IDM}\left(4\right)\)

Từ \(\left(1\right);\left(4\right)\Rightarrow\widehat{AID}=\widehat{IDM}\)

\(\Leftrightarrow\widehat{MID}=\widehat{IDM}\)

\(\Leftrightarrow\Delta IDM\) cân \(\left\{M\right\}\)

\(\Leftrightarrow DM=IM\)

Ta lại có: \(IM=AM+AI=AM+CE\)

\(\Rightarrow DM=AM+CE\)

5 tháng 9 2023

Ta đặt:  \(S_{BEMF}=S_1;S_{ABC}=S\)

Kẻ \(AK\perp BC\) ; \(AK\) cắt \(EM\left\{H\right\}\)

Ta có: \(S_1=EM.HK\)

\(\Leftrightarrow S=\dfrac{1}{2}BC.AK\)

\(\Leftrightarrow\dfrac{S_1}{S}=2\dfrac{EM}{BC}.\dfrac{KH}{AK}\)

Đặt \(MA=x;MC=y\) . Theo định lý Thales ta có:

\(\dfrac{EM}{BC}=\dfrac{x}{x+y};\dfrac{HK}{AK}=\dfrac{x}{x+y}\)

\(\Leftrightarrow\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\)

Áp dụng bất đẳng thức Cosi dạng \(\dfrac{ab}{\left(a+b\right)^2}\le\dfrac{1}{4}\) ta được:

\(\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\le\dfrac{1}{2}\) hay \(S_1\le\dfrac{1}{2}S\)

\(\Leftrightarrow MaxS_1=\dfrac{1}{2}S\)

\(\Leftrightarrow\) \(M\) là trung điểm của \(AC\)

5 tháng 9 2023

Bạn xem lại đề bài.

5 tháng 9 2023

Bạn xem lại đề

5 tháng 9 2023

\(A=\sqrt[]{1+2015^2+\dfrac{2015^2}{2016^2}}+\dfrac{2015}{2016}\)

\(\Leftrightarrow A=\sqrt[]{\left(1+2015\right)^2-2.2015+\dfrac{2015^2}{\left(2015+1\right)^2}}+\dfrac{2015}{2016}\)

\(\Leftrightarrow A=\sqrt[]{\left(1+2015-\dfrac{2015}{2015+1}\right)^2}+\dfrac{2015}{2016}\)

\(\Leftrightarrow A=\left|1+2015-\dfrac{2015}{2016}\right|+\dfrac{2015}{2016}\)

\(\Leftrightarrow A=1+2015-\dfrac{2015}{2016}+\dfrac{2015}{2016}\)

\(\Leftrightarrow A=1+2015=2016\)

AH
Akai Haruma
Giáo viên
5 tháng 9 2023

Lời giải:

Đặt $x=a; \frac{y}{2}=b$ thì bài toán trở thành:

Tìm min $A=\frac{1}{a^2+1}+\frac{1}{b^2+1}+2ab$ với $ab\geq 1$
----------------------------------

Với $ab\geq 1$, ta có BĐT khá quen thuộc:

$\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}$ (để cm BĐT này bạn chỉ cần biến đổi tương đương) 

Áp dụng vào bài và sử dụng thêm BĐT AM-GM:

$A\geq \frac{2}{ab+1}+2ab=\frac{2}{ab+1}+\frac{ab+1}{2}+\frac{3ab-1}{2}$

$\geq 2\sqrt{\frac{2}{ab+1}.\frac{ab+1}{2}}+\frac{3ab-1}{2}$

$=2+\frac{3ab-1}{2}\geq 2+\frac{3.1-1}{2}=3$

Vậy $A_{\min}=3$.

4 tháng 9 2023

Đặt \(A=\sqrt{a+1}+\sqrt{a+3}\)

\(\Rightarrow A^2=2a+4+2\sqrt{\left(a+1\right)\left(a+3\right)}\)

Đặt \(B=2\sqrt{a+2}\)

\(\Rightarrow B^2=4a+8\)

Xét hiệu \(B^2-A^2=2a+4-2\sqrt{\left(a+1\right)\left(a+3\right)}\)

Áp dụng BĐT Cô-si, ta có \(2a+4=\left(a+1\right)+\left(a+3\right)\) \(>2\sqrt{\left(a+1\right)\left(a+3\right)}\) 

 (Dấu "=" không thể xảy ra vì khi đó sẽ suy ra đẳng thức vô lí là \(1=3\))

 Từ đó suy ra \(B^2-A^2>0\) \(\Leftrightarrow B^2>A^2\), và do A, B dương nên suy ra \(B>A\). Nói cách khác, \(2\sqrt{a+2}>\sqrt{a+1}+\sqrt{a+3}\)

 

4 tháng 9 2023

sao em bấm máy tính thì dấu bằng ảy ra khi =10000000 vậy ạ.