K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2020

(63^3-37^3):26 + 63.37 đề bài ở trên sai nha

5 tháng 11 2020

10000

5 tháng 11 2020

x^3-5x^2-14x=0

x(x^2-5x-14)=0

x[(x^2+2x)-(7x+14)]=0

x[x(x+2)-7(x+2)]=0

x(x-7)(x+2)=0

=>x=0;x-7=0;x+2=0

=>x=0;x+7;x=-2

5 tháng 11 2020

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(c+a+b\right)^2}{a+b+b+c+a+c}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=VP\)

=> đpcm

Dấu "=" xảy ra <=> a = b = c

5 tháng 11 2020

Ta có : \(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\)

\(=\left(\frac{b+c}{a}+1\right)+\left(\frac{c+a}{b}+1\right)+\left(\frac{a+b}{c}+1\right)-3\)

\(=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-3\)

\(=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-3\)

\(\ge3\sqrt[3]{abc}\cdot\frac{3}{\sqrt[3]{abc}}-3=9-3=6\)( bất đẳng thức Cauchy )

=> đpcm

Dấu "=" xảy ra <=> a=b=c

5 tháng 11 2020

1. Ta có : A = a2 + 2ab + 50 - 12a - 12b + b2

= ( a2 + 2ab + b2 ) - ( 12a + 12b ) + 50

= ( a + b )2 - 12( a + b ) + 50

= 22 - 12.2 + 50

= 30

2. Đặt f(x) = x4 - x3 + 6x2 - x + n 

           g(x) = x2 - x + 5

Đặt thương trong phép chia f(x) cho g(x) là h(x)

f(x) bậc 4 ; g(x) bậc 2 => h(x) bậc 2

=> h(x) có dạng x2 + ax + b

Khi đó : f(x) chia hết cho g(x) <=> f(x) = g(x).h(x)

<=> x4 - x3 + 6x2 - x + n = ( x2 - x + 5 )( x2 + ax + b )

<=> x4 - x3 + 6x2 - x + n = x4 + ax3 + bx2 - x3 - ax2 - bx + 5x2 + 5ax + 5b

<=> x4 - x3 + 6x2 - x + n = x4 + ( a - 1 )x3 + ( b - a + 5 )x2 + ( 5a - b )x + 5b

Đồng nhất hệ số ta có :

a - 1 = -1 ; b - a + 5 = 6 ; 5a - b = -1 ; 5b = n

=> a = 0 ; b = 1 ; n = 5

=> n = 5

Vậy n = 5

5 tháng 11 2020

Còn có cách khác

Thực hiện phép chia đa thức: x4 - x3 + 6x2 - x +n chia  cho đa thức x2 - x + 5 có thương x2 + 1 phần dư là n - 5 

Để đa thức x4 - x3 + 6x2 - x +n chia hết cho đa thức x2 - x + 5 => n - 5 = 0 

=> n = 5 

Tuy nhiên đề đúng là đa thức x4 - x2 + 6x2 - x +n hay đa thức x4 - x3 + 6x2 - x +n ?