Viết mỗi tích, thương sau dưới dạng một lũy thừa
a. \(4^{10}.2^{30}\) b. \(9^{25}.27^4.81^3\) c. \(25^{50}.125^5\) d. \(64^3.4^8.16^4\)
e: \(3^8:3^6\) f. \(2^{10}:8^3\) g. \(12^7:6^7\) h. \(21^5:81^3\)
i. \(4^9:64^2\) j. \(2^{25}:32^4\) k. \(125^3:25^4\)
a: \(4^{10}\cdot2^{30}=2^{20}\cdot2^{30}=2^{50}\)
b: \(9^{25}\cdot27^4\cdot81^3=3^{50}\cdot3^{12}\cdot3^{12}=3^{74}\)
c: \(25^{50}\cdot125^5=\left(5^2\right)^{50}\cdot\left(5^3\right)^5=5^{115}\)
d: \(64^3\cdot4^8\cdot16^4=\left(4^3\right)^3\cdot4^8\cdot\left(4^2\right)^4=4^9\cdot4^8\cdot4^8=4^{25}\)
e: \(3^8:3^6=3^{8-6}=3^2\)
f: \(2^{10}:8^3=2^{10}:2^9=2\)
g: \(12^7:6^7=\left(\dfrac{12}{6}\right)^7=2^7\)
h: \(21^5:81^3=\dfrac{7^5\cdot3^5}{3^3\cdot27^3}=\dfrac{7^5}{27^3}\)
i: \(4^9:64^2=4^9:\left(4^3\right)^2=4^9:4^6=4^3\)
j: \(2^{25}:32^4=2^{25}:2^{20}=2^5\)
k: \(125^3:25^4=\left(5^3\right)^3:\left(5^2\right)^4=5^9:5^8=5\)