K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2023

Bạn ghi rõ lại đề, phần .../(n+4)

8 tháng 9 2023

\(u_n:\left\{{}\begin{matrix}u_1=0;u_1=1\\u_{n+2}=\dfrac{u_{n+1}}{u_{n+1}+u_{n+2}}\end{matrix}\right.\)

Giả sử \(limu_n=a\Rightarrow limu_{n+1}=limu_{n+2}=a\)

\(\Rightarrow a=\dfrac{a}{a+a}=\dfrac{a}{2a}=\dfrac{1}{2}\)

Nên dãy \(u_n\) có giới hạn hữu hạn

vì \(\left\{{}\begin{matrix}u_1=0\\u_2=1>0\end{matrix}\right.\)

\(\Rightarrow u_{n+2}=\dfrac{u_{n+1}}{u_{n+1}+u_{n+2}}>0,\forall n\inℕ\)

\(\Rightarrow a>0\)

\(\Rightarrow limu_n=a=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
5 tháng 9 2023

Lời giải:
Gọi A là biến cố sinh viên đó là nữ và B là biến cố sinh viên đó học khoa kinh tế -qtkd.

Theo bài ra:

$P(A)=0,6$

$P(B)=0,4$
$P(AB)=0,6.0,35=0,21$

a.

$P(A|B)=\frac{P(AB)}{P(B)}=\frac{0,21}{0,4}=0,525$

b. 

$P(B|A)=\frac{P(AB)}{P(A)}=\frac{0,21}{0,6}=0,35$

5 tháng 9 2023

tick cho mình đi 

 

Giả sử có ít nhất 7 ô mà số khăn ăn phủ lên nó là số lẻ. Khi đó, tổng số khăn ăn phủ lên bàn ăn là 7l, với l là số lẻ.

Ta có thể chia bàn ăn thành 8 ô hàng ngang và 8 ô hàng dọc. Do đó, tổng số khăn ăn phủ lên bàn ăn cũng phải chia hết cho 8.

Tuy nhiên, 7l không chia hết cho 8 với mọi giá trị của l. Do đó, giả thuyết của chúng ta là sai.

Vậy, có ít nhất 1 ô mà số khăn ăn phủ lên nó là số chẵn.

Chứng minh bằng phản chứng. Giả sử không có ô nào mà số khăn ăn phủ lên nó là số chẵn. Khi đó, số khăn ăn phủ lên mỗi ô là 1 hoặc 3.

Do đó, tổng số khăn ăn phủ lên bàn ăn là 2n, với n là số ô.

Ta có thể chia bàn ăn thành 8 ô hàng ngang và 8 ô hàng dọc. Do đó, tổng số khăn ăn phủ lên bàn ăn cũng phải chia hết cho 8.

Tuy nhiên, 2n không chia hết cho 8 với mọi giá trị của n. Do đó, giả thuyết của chúng ta là sai.

Vậy, có ít nhất 1 ô mà số khăn ăn phủ lên nó là số chẵn.

Kết luận: Cho dù có đặt khăn ăn như thế nào thì cũng luôn tồn tại ít nhất 1 ô mà số khăn ăn phủ lên nó là một số chẵn.

    share Google it
1 tháng 9 2023

 Sao số tự nhiên có 5 chữ số khác nhau mà lại có chữ số 3 lặp lại 2 lần thế bạn?

29 tháng 8 2023

OLM chào em và cảm ơn em đã yêu thương và tin tưởng và lựa chọn hệ thống giáo dục olm.vn.

            Về vấn đề em hỏi cô xin chia sẻ tới em một vài thông tin như sau: 

      +  Em cần phải xem kỹ xem yêu cầu đổi quà của em đã thành công hay chưa?

      + Nếu chưa thành công thì tức là em sẽ không nhận  được quà vì hệ thống chưa xác nhận yêu cầu đổi quà của em.

     + Nếu yêu cầu đổi quà em đã đực xác thực hệ thống sẽ thông báo tới em là yêu cầu đổi quà thành công.

    + Em cần kiểm tra địa chỉ của em xem đã đúng chưa, tất cả mọi thứ đều chuẩn mực em sẽ nhận được quà từ olm em nhé.

    + Nếu các thông tin em cung cấp không chính xác thì quà sẽ bị gửi lại công ty và em không nhận được quà.

                Trên đây là các thông tin mà cô gửi đến em về việc đổi quà, bản thân cô cũng nhận được rất nhiều quà từ olm nên em cứ yên tâm nhá.loading...

          

29 tháng 8 2023

A B C D M N P I K K X Y Z

a/

Ta có

M là trọng tâm tg ABC \(\Rightarrow\dfrac{MI}{MA}=\dfrac{1}{2}\)

N là trọng tâm tg ACD \(\Rightarrow\dfrac{NK}{NA}=\dfrac{1}{2}\)

Xét tg AIK có

\(\dfrac{MI}{MA}=\dfrac{NK}{NA}=\dfrac{1}{2}\) => MN//IK (Talet đảo trong tam giác)

Ta có

\(I\in BC;BC\in\left(BCD\right)\Rightarrow I\in\left(BCD\right)\)

\(K\in CD;CD\in\left(BCD\right)\Rightarrow K\in\left(BCD\right)\)

\(\Rightarrow IK\in\left(BCD\right)\) Mà MN//IK (cmt) => MN//(BCD)

Các trường hợp khác c/m tương tự

b/

Trong (ABC) từ M dưng đường thẳng // BC cắt AB; AC tại X và Y

Trong (ACD) nối YN cắt AD tại Z

Xét tg ABC có

\(\dfrac{XB}{XA}=\dfrac{YC}{YA}=\dfrac{MI}{MA}=\dfrac{1}{2}\) (Talet trong tam giác)

XY//BC; \(BC\in\left(BCD\right)\) => XY//(BCD)

Xét tg ACK có

\(\dfrac{YC}{YA}=\dfrac{NK}{NA}=\dfrac{1}{2}\) => YN//CK => YZ//CD

mà \(CD\in\left(BCD\right)\) => YZ//(BCD)

=> (XYZ)//(BCD)

Ta có MP//(BCD); MN//(BCD) => (MNP)//(BCD)

mà \(M\in\left(MNP\right);M\in\left(XYZ\right)\)

\(\Rightarrow\left(MNP\right)\equiv\left(XYZ\right)\) (Từ 1 điểm ngoài 1 mặt phẳng cho trước chỉ có duy nhất 1 mặt phẳng đi qua điểm đã cho và // với mặt phẳng cho trước)

=> (XYZ) là thiết diện của tứ diện ABCD khi cắt bởi (MNP)