Tìm max
C= -x^2-3X+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-x^2-6x+3\)
\(\Rightarrow A=-\left(x^2+6x\right)+3\)
\(\Rightarrow A=-\left(x^2+6x+9-9\right)+3\)
\(\Rightarrow A=-\left(x^2+6x+9\right)+3+9\)
\(\Rightarrow A=-\left(x+3\right)^2+12\le12\left(-\left(x+3\right)^2\le0,\forall x\right)\)
\(\Rightarrow Max\left(A\right)=12\left(tạix=-3\right)\)
\(D=-2x^2+3x-1\)
\(\Rightarrow D=-2\left(x^2-\dfrac{3}{2}x\right)-1\)
\(\Rightarrow D=-2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}\right)-1\)
\(\Rightarrow D=-2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{4}\right)-1+\dfrac{9}{2}\)
\(\Rightarrow D=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{2}\le-\dfrac{7}{2}\left(-2\left(x-\dfrac{3}{2}\right)^2\le0,\forall x\right)\)
\(\Rightarrow Max\left(D\right)=-\dfrac{7}{2}\left(tạix=\dfrac{3}{2}\right)\)
\(C=-x^2-3x+4\)
\(\Rightarrow C=-\left(x^2+3x\right)+4\)
\(\Rightarrow C=-\left(x^2+3x+\dfrac{9}{4}-\dfrac{9}{4}\right)+4\)
\(\Rightarrow C=-\left(x^2+3x+\dfrac{9}{4}\right)+4+\dfrac{9}{4}\)
\(\Rightarrow C=-\left(x+\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\left(-\left(x+\dfrac{3}{2}\right)^2\le0,\forall x\right)\)
\(\Rightarrow Max\left(C\right)=\dfrac{25}{4}\left(tạix=-\dfrac{3}{2}\right)\)
\(B=-x^2+8x-1=-\left(x^2-2.x.4+4^2\right)+15=-\left(x-4\right)^2+15\\ Vì:\left(x-4\right)^2\ge0\forall x\in R\\ \Rightarrow15-\left(x-4\right)^2\le15\forall x\in R\\ Vậy:max_B=15.khi.x=4\)
A = \(-x^2\)\(-6x+3\)
A = \(-x^2\)\(-6x+9-6\)
A = \(-\left(x-3\right)^2\)\(-6\) ≤ \(-6\)
Dấu "=" xảy ra ⇔ \(x-3=0\)
⇔ \(x=3\)
Vậy Amax =\(-6\) ⇔ \(x=3\)
\(H=5x^2-x+1\)
\(\Rightarrow H=5\left(x^2-\dfrac{1}{5}x\right)+1\)
\(\Rightarrow H=5\left(x^2-\dfrac{1}{5}x+\dfrac{1}{100}-\dfrac{1}{100}\right)+1\)
\(\Rightarrow H=5\left(x^2-\dfrac{1}{5}x+\dfrac{1}{100}\right)+1-\dfrac{1}{20}\)
\(\Rightarrow H=5\left(x-\dfrac{1}{10}\right)^2+\dfrac{19}{20}\ge\dfrac{19}{20}\left(5\left(x-\dfrac{1}{10}\right)^2\ge0,\forall x\right)\)
\(\Rightarrow Min\left(H\right)=\dfrac{19}{20}\left(tạix=\dfrac{1}{10}\right)\)
\(G=4x^2+2x-1\)
\(\Rightarrow G=4\left(x^2+\dfrac{1}{2}x\right)-1\)
\(\Rightarrow G=4\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)-1-\dfrac{1}{4}\)
\(\Rightarrow G=4\left(x+\dfrac{1}{4}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\left(4\left(x+\dfrac{1}{4}\right)^2\ge0,\forall x\right)\)
\(\Rightarrow Min\left(G\right)=-\dfrac{5}{4}\left(tạix=-\dfrac{1}{4}\right)\)
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$