cho a + b + c = 0
CMR a7 + b7 + c7 /7 = a2 + b2 + c2/2 x a5 + b5 + c5 /5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-3x\left(x+2\right)^2+\left(x+3\right)\left(x+1\right)-\left(2x-3\right)^2\)
\(=-3x\left(x^2+4x+4\right)+x^2+3x+x+3-\left(4x^2-12x+9\right)\)
\(=-3x^3-12x^2-12x+x^2+4x+3-4x^2+12x-9\)
\(=-3x^3-15x^2+4x-6\)
\(x^2-2xy+5y^2+4y+1\)
\(=x^2-2xy+y^2+4y^2+4y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2\)
\(x^2-2xy+5y^2+4y+1=x^2-2xy+y^2+4y^2+4y+1=\left(x-y\right)^2+\left(2y+1\right)^2\)
Bài 1:
a, \(x^3\) + y3 + \(x\) + y
= (\(x^3\) + y3) + (\(x\) + y)
= (\(x\) + y)(\(x^2\) - \(xy\) + y2) + (\(x\) + y)
= (\(x\) + y)( \(x^2-xy+y^2\)+1)
b, \(x^3\) + 4\(x^2\)y + 4\(xy^2\) - 9\(x\)
= \(x\)(\(x^2\) + 4\(xy\) + 4y2 - 9)
= \(x\)[ (\(x\) + 2y)2 - 32)
= \(x\)[ (\(x\) + 2y - 3).( \(x\) + 2y + 3)]
1) \(A=4x-x^2+3\)
\(A=-\left(x^2-4x-3\right)\)
\(A=-\left(x^2-4x+4\right)+7\)
\(A=-\left(x-2\right)^2+7\)
Mà: \(-\left(x-2\right)^2\le0\forall x\) nên: \(A=-\left(x-2\right)^2+7\le7\)
Dấu "=" xảy ra:
\(-\left(x-2\right)^2+7=7\)
\(\Rightarrow x=2\)
Vậy: \(A_{max}=7\) khi \(x=2\)
2) \(B=x-x^2\)
\(B=-x^2+x\)
\(B=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)
Mà: \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\) nên \(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Dấu "=" xảy ra:
\(-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy: \(B_{max}=\dfrac{1}{4}\) với \(x=\dfrac{1}{2}\)
\(Bài.1:\\ a,0,125.\left(-3,7\right).2^3=0,125.\left(-3.7\right).8\\ =\left(0,125.8\right).\left(-3,7\right)=1.\left(-3,7\right)=-3,7\\ b,\sqrt{36}.\sqrt{\dfrac{25}{16}}+\dfrac{1}{4}=6.\dfrac{5}{4}+\dfrac{1}{4}=\dfrac{15}{2}+\dfrac{1}{4}=\dfrac{30}{4}+\dfrac{1}{4}=\dfrac{31}{4}\\ c,\sqrt{\dfrac{4}{81}}.\sqrt{\dfrac{25}{81}}-\dfrac{12}{5}\\ =\dfrac{2}{9}.\dfrac{5}{9}-\dfrac{12}{5}=\dfrac{10}{81}-\dfrac{12}{5}=\dfrac{10.5-12.81}{420}=-\dfrac{461}{210}\\ d,0,1.\sqrt{225}.\sqrt{\dfrac{1}{4}}=0,1.15.\dfrac{1}{2}=0,75\)
Bài 2:
\(a,\dfrac{1}{5}+x=\dfrac{2}{3}\\ x=\dfrac{2}{3}-\dfrac{1}{5}=\dfrac{10}{15}-\dfrac{3}{15}=\dfrac{7}{15}\\ ---\\ b,-\dfrac{5}{8}+x=\dfrac{4}{9}\\ x=\dfrac{4}{9}-\left(-\dfrac{5}{8}\right)=\dfrac{4}{9}+\dfrac{5}{8}=\dfrac{4.8+5.9}{72}=\dfrac{77}{72}\\ ---\\ c,\dfrac{13}{4}x+1\dfrac{1}{2}=-\dfrac{4}{5}\\ \dfrac{13}{4}x+\dfrac{3}{2}=-\dfrac{4}{5}\\ \dfrac{13}{4}x=-\dfrac{4}{5}-\dfrac{3}{2}=\dfrac{-4.2-3.5}{10}=-\dfrac{23}{10}\\ x=-\dfrac{23}{10}:\dfrac{13}{4}=-\dfrac{23}{10}.\dfrac{4}{13}=-\dfrac{46}{65}\\ ---\\ d,\dfrac{1}{4}+\dfrac{3}{4}x=\dfrac{3}{4}\\ \dfrac{3}{4}x=\dfrac{3}{4}-\dfrac{1}{4}=\dfrac{1}{2}\\ x=\dfrac{1}{2}:\dfrac{3}{4}=\dfrac{1}{2}.\dfrac{4}{3}=\dfrac{4}{6}=\dfrac{2}{3}\)
1) \(\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
2) \(x^2-2x=24\)
\(\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow x^2+4x-6x-24=0\)
\(\Leftrightarrow x\left(x+4\right)-6\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
\(x^4-6x^3+16x^2-22x+16=0\)
\(\Rightarrow x^4-2x^3+3x^2-4x^3+8x^2-12x+5x^2-10x+15+1=0\)
\(\Rightarrow x^2\left(x^2-2x+3\right)-4x\left(x^2-2x+3\right)+5\left(x^2-2x+3\right)x^2+1=0\)
\(\Rightarrow\left(x^2-2x+3\right)\left(x^2-4x+5\right)=-1\)
\(\Rightarrow\left(x^2-2x+1+2\right)\left(x^2-4x+4+1\right)=-1\)
\(\Rightarrow\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]=-1\left(1\right)\)
mà \(\left\{{}\begin{matrix}\left(x-1\right)^2+2>0,\forall x\\\left(x-2\right)^2+1>0,\forall x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]>0,\forall x\\\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]=-1\end{matrix}\right.\) (vô lí)
Vậy phương trình trên vô nghiệm (dpcm)