K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2023

a) \(-3x\left(x+2\right)^2+\left(x+3\right)\left(x+1\right)-\left(2x-3\right)^2\)

\(=-3x\left(x^2+4x+4\right)+x^2+3x+x+3-\left(4x^2-12x+9\right)\)

\(=-3x^3-12x^2-12x+x^2+4x+3-4x^2+12x-9\)

\(=-3x^3-15x^2+4x-6\)

10 tháng 8 2023

ai lam cau b cko tui dc ko

 

10 tháng 8 2023

\(x^2-2xy+5y^2+4y+1\)

\(=x^2-2xy+y^2+4y^2+4y+1\)

\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2\)

10 tháng 8 2023

\(x^2-2xy+5y^2+4y+1=x^2-2xy+y^2+4y^2+4y+1=\left(x-y\right)^2+\left(2y+1\right)^2\)

1
10 tháng 8 2023

Bài 1:

a, \(x^3\) + y3 + \(x\) + y

= (\(x^3\) + y3) + (\(x\)  + y)

= (\(x\) + y)(\(x^2\) - \(xy\) + y2)  + (\(x\) + y)

= (\(x\) + y)( \(x^2-xy+y^2\)+1)

b, \(x^3\) + 4\(x^2\)y + 4\(xy^2\) - 9\(x\)

\(x\)(\(x^2\) + 4\(xy\) + 4y2 - 9)

\(x\)[ (\(x\) + 2y)2 - 32)

\(x\)[ (\(x\) + 2y - 3).( \(x\) + 2y + 3)]

 

 

10 tháng 8 2023

1) \(A=4x-x^2+3\)

\(A=-\left(x^2-4x-3\right)\)

\(A=-\left(x^2-4x+4\right)+7\)

\(A=-\left(x-2\right)^2+7\)

Mà: \(-\left(x-2\right)^2\le0\forall x\) nên: \(A=-\left(x-2\right)^2+7\le7\)

Dấu "=" xảy ra:

\(-\left(x-2\right)^2+7=7\)

\(\Rightarrow x=2\)

Vậy: \(A_{max}=7\) khi \(x=2\)

10 tháng 8 2023

2) \(B=x-x^2\)

\(B=-x^2+x\)

\(B=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}\)

\(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)

Mà: \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\) nên \(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

Dấu "=" xảy ra:
\(-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Rightarrow x=\dfrac{1}{2}\)

Vậy: \(B_{max}=\dfrac{1}{4}\) với \(x=\dfrac{1}{2}\)

10 tháng 8 2023

\(Bài.1:\\ a,0,125.\left(-3,7\right).2^3=0,125.\left(-3.7\right).8\\ =\left(0,125.8\right).\left(-3,7\right)=1.\left(-3,7\right)=-3,7\\ b,\sqrt{36}.\sqrt{\dfrac{25}{16}}+\dfrac{1}{4}=6.\dfrac{5}{4}+\dfrac{1}{4}=\dfrac{15}{2}+\dfrac{1}{4}=\dfrac{30}{4}+\dfrac{1}{4}=\dfrac{31}{4}\\ c,\sqrt{\dfrac{4}{81}}.\sqrt{\dfrac{25}{81}}-\dfrac{12}{5}\\ =\dfrac{2}{9}.\dfrac{5}{9}-\dfrac{12}{5}=\dfrac{10}{81}-\dfrac{12}{5}=\dfrac{10.5-12.81}{420}=-\dfrac{461}{210}\\ d,0,1.\sqrt{225}.\sqrt{\dfrac{1}{4}}=0,1.15.\dfrac{1}{2}=0,75\)

10 tháng 8 2023

Bài 2:

\(a,\dfrac{1}{5}+x=\dfrac{2}{3}\\ x=\dfrac{2}{3}-\dfrac{1}{5}=\dfrac{10}{15}-\dfrac{3}{15}=\dfrac{7}{15}\\ ---\\ b,-\dfrac{5}{8}+x=\dfrac{4}{9}\\ x=\dfrac{4}{9}-\left(-\dfrac{5}{8}\right)=\dfrac{4}{9}+\dfrac{5}{8}=\dfrac{4.8+5.9}{72}=\dfrac{77}{72}\\ ---\\ c,\dfrac{13}{4}x+1\dfrac{1}{2}=-\dfrac{4}{5}\\ \dfrac{13}{4}x+\dfrac{3}{2}=-\dfrac{4}{5}\\ \dfrac{13}{4}x=-\dfrac{4}{5}-\dfrac{3}{2}=\dfrac{-4.2-3.5}{10}=-\dfrac{23}{10}\\ x=-\dfrac{23}{10}:\dfrac{13}{4}=-\dfrac{23}{10}.\dfrac{4}{13}=-\dfrac{46}{65}\\ ---\\ d,\dfrac{1}{4}+\dfrac{3}{4}x=\dfrac{3}{4}\\ \dfrac{3}{4}x=\dfrac{3}{4}-\dfrac{1}{4}=\dfrac{1}{2}\\ x=\dfrac{1}{2}:\dfrac{3}{4}=\dfrac{1}{2}.\dfrac{4}{3}=\dfrac{4}{6}=\dfrac{2}{3}\)

10 tháng 8 2023

1) \(\left(x-3\right)^2-4=0\)

\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

2) \(x^2-2x=24\)

\(\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow x^2+4x-6x-24=0\)

\(\Leftrightarrow x\left(x+4\right)-6\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

 

10 tháng 8 2023

Câu 3 số xấu rồi e

10 tháng 8 2023

\(x^4-6x^3+16x^2-22x+16=0\)

\(\Rightarrow x^4-2x^3+3x^2-4x^3+8x^2-12x+5x^2-10x+15+1=0\)

\(\Rightarrow x^2\left(x^2-2x+3\right)-4x\left(x^2-2x+3\right)+5\left(x^2-2x+3\right)x^2+1=0\)

\(\Rightarrow\left(x^2-2x+3\right)\left(x^2-4x+5\right)=-1\)

\(\Rightarrow\left(x^2-2x+1+2\right)\left(x^2-4x+4+1\right)=-1\)

\(\Rightarrow\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]=-1\left(1\right)\)

mà \(\left\{{}\begin{matrix}\left(x-1\right)^2+2>0,\forall x\\\left(x-2\right)^2+1>0,\forall x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]>0,\forall x\\\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]=-1\end{matrix}\right.\) (vô lí)

Vậy phương trình trên vô nghiệm (dpcm)