K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

\(A=\sqrt{x^3+8}+\sqrt{y^3+8}+\sqrt{z^3+8}\)

\(A=\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}+\sqrt{\left(y+2\right)\left(y^2-2x+4\right)}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}\)

\(\sqrt{\frac{1}{2}}A=\sqrt{\left(x+2\right)\left(x^2-2x+4\right).\frac{1}{2}}+\sqrt{\left(y+2\right)\left(y^2-2x+4\right).\frac{1}{2}}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right).\frac{1}{2}}\)\(\sqrt{\frac{1}{2}}A=\sqrt{\left(x+2\right)\left(\frac{x^2}{2}-x+2\right)}+\sqrt{\left(y+2\right)\left(\frac{y^2}{2}-x+2\right)}+\sqrt{\left(z+2\right)\left(\frac{z^2}{2}-z+2\right)}\)

Áp dụng BĐT AM-GM ta có: 

\(\sqrt{\frac{1}{2}}A\le\frac{x+2+\frac{x^2}{2}-x+2+y+2+\frac{y^2}{2}-y+2+z+2+\frac{z^2}{2}-z+2}{2}=\frac{12+\frac{x^2+y^2+z^2}{2}}{2}=\frac{12+\frac{48}{2}}{2}=\frac{12+24}{2}=\frac{36}{2}=18\)

\(\Leftrightarrow A\le18:\sqrt{\frac{1}{2}}=18\sqrt{2}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2=\frac{x^2}{2}-x+2\\y+2=\frac{y^2}{2}-y+2\\z+2=\frac{z^2}{2}-z+2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=4x\\y^2=4y\\z^2=4z\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(x-4\right)=0\\y\left(y-4\right)=0\\z\left(z-4\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\\z=4\end{cases}\left(v\text{ì}x,y,z>0\right)}}\)

Vậy \(A_{max}=18\sqrt{2}\Leftrightarrow x=y=z=4\)

Tham khảo nhé~

21 tháng 12 2018

\(Taco:\)

\(Đặt:S=a^2+b^2+c^2\)

\(.Với:a=4;b=5;c=6\Rightarrow S=76< 90\)

\(Taco:4+5+6=15\)

\(mà:a=4;b=5;c=6.S< 90\Rightarrow\)ít nhất a>4 hoặc: b>5 hoặc: c>6

Vì: a2;b2,c2 E N=> a,b,c E N

=> \(a+b+c\inℕ\Rightarrow a+b+c>15\Rightarrow a+b+c\ge16\left(đpcm\right)\)

22 tháng 12 2018

Hoi nham ti ti nx to lam lai cho trua nhe

21 tháng 12 2018

2032 nha bn

^.^

21 tháng 12 2018

ô mình cũng 2k5

21 tháng 12 2018

a)  Ax, By là các tiếp tuyến của đường tròn (O)

=>  Ax // By  (cùng vuông góc với AB)

=>  AMNB là hình thang

Hình thang AMNB có: OA = OB;  IM = IN

=>  OI là đường trung bình

=>  OI // AM // BN

Lại có:  AM, BN vuông góc với AB

=>  IO vuông góc với AB

=>  AB là tiếp tuyến của đường tròn (I;IO)

21 tháng 12 2018

b)  Góc AMO = góc MOI  (cùng phụ góc MOA)   (1)

Tam giác MON vuông tại M có OI là đường trung tuyến

=> OI = MI = IN

=> tgiac MIO cân tại I

=>  góc IMO = góc MOI   (2)

Từ (1) và (2)  =>  góc AMO = góc IMO

=>  MO là phân gics góc AMN

21 tháng 12 2018

\(\sqrt{28-6\sqrt{3}}\) ms đúng đề chứ bạn

21 tháng 12 2018

\(\sqrt{28-16\sqrt{3}}+\sqrt{13-4\sqrt{3}}\)

\(=\sqrt{\left(4-2\sqrt{3}\right)^2}+\sqrt{\left(2\sqrt{3}-1\right)^2}\)

\(=\left|4-2\sqrt{3}\right|+\left|2\sqrt{3}-1\right|\)

\(=4-2\sqrt{3}+2\sqrt{3}-1=3\)

24 tháng 12 2018

Ta có

\(x^4+y^4=7z^4+5\Leftrightarrow x^4+y^4+z^4=8z^4+5\)

Áp dụng tính chất lũy thừa bậc 4 của số nguyên a khi chia cho 8 dư 0 hoặc 1

tức là \(a^4\equiv0,1\left(mod8\right)\)

\(\Rightarrow a^4+b^4+c^4\equiv0,1,2,3\left(mod8\right)\)

Mà \(8z^4+5\equiv5\left(mod8\right)\)

vậy pt k có nghiệm nguyên