chứng minh rằng:
A\(=x^2+x+1>0\) với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-25\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left[x^2-5^2\right]^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left[\left(x+5\right)\left(x-5\right)\right]^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2\left(x-5\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2\left[\left(x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x+5\right)^2\left[\left(x-5\right)+1\right]\left[\left(x-5\right)-1\right]=0\)
\(\Leftrightarrow\left(x+5\right)^2\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=0\\x-4=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x=4\\x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=4\\x=6\end{matrix}\right.\)
Vậy: \(S=\left\{-5;6;4\right\}\)
Ta có ( x2 - 25 )2 - ( x + 5 )2 = 0
Vì ( x2 - 25 )2 ≥ 0 ; ( x + 5 )2 ≥ 0
⇒ ( x2 - 25 )2 - ( x + 5 )2 ≥ 0
Dấu " = " xảy ra khi
\(\left[{}\begin{matrix}\left(x^2-25\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm5\\x=-5\end{matrix}\right.\Rightarrow x=-5\)
Vậy x = 5
\(x^3-4x^2-9x+36=0\)
\(x^2\left(x-4\right)-9\left(x-4\right)=0\)
\(\left(x-4\right)\left(x^2-9\right)=0\)\(\)
\(\Rightarrow x-4=0\) hay \(x^2-9=0\)
\(\Rightarrow x=4\) hay \(x^2=9=3^2\)
\(\Rightarrow x=4\) hay \(x=\pm3\)
⇔x2(x-4) -9(x-4) = 0
⇔(x-4).(x-3).(x+3) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)
Ta có
\(\left(x+x\right)^3=x^3+3x^2y+3xy^2+y^3=x^3+y^3+3xy\left(x+y\right)\)
\(\Rightarrow x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(\Rightarrow K=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\) Với x+y=1
\(\Rightarrow K=1^3-3xy+3xy=1\)
\(\text{∘ Ans}\)
\(\downarrow\)
\(\left(x^2-5x+4\right)\left(2x+4\right)-\left(2x^2-x-10\right)\left(x-3\right)\)
`= 2x(x^2 - 5x + 4) + 4(x^2 - 5x + 4) - [x(2x^2 - x - 10) - 3(2x^2 - x - 10) ]`
`= 2x^3 - 10x^2 + 8x + 4x^2 - 20x + 16 - (2x^3 - x^2 - 10x - 6x^2 + 3x + 30)`
`= 2x^3 - 6x^2 - 12x + 16 - 2x^3 + x^2 + 10x + 6x^2 - 3x - 30`
`= (2x^3 - 2x^3) + (-6x^2 + 6x^2 + x^2) + (-12x + 10x - 3x) + (16 - 30)`
`= x^2 - 5x - 14`
Bạn xem lại đề.
\(\left(x-y\right)^2+2xy⋮4\)
\(\Rightarrow x^2-2xy+y^2+2xy⋮4\)
\(\Rightarrow x^2+y^2⋮4\)
\(\Rightarrow x^2⋮4;y^2⋮4\)
mà \(4⋮2\)
\(\Rightarrow x^2⋮2;y^2⋮2\Rightarrow x⋮2;y⋮2\)
\(\Rightarrow dpcm\)
Bài làm của bạn Trí từ chỗ \(x^2+y^2⋮4\Rightarrow x^2,y^2⋮4\) thì bạn còn phải xét thêm trường hợp \(x,y\) cùng lẻ nữa. Vì số chính phương khi chia cho 4 chỉ có thể dư 0 hoặc 1 nên nếu \(x,y\) lẻ thì \(x^2+y^2\) chia 4 dư 2, không thỏa mãn. Vậy mới suy ra được \(x^2,y^2⋮4\). Còn lại bạn đúng hết rồi.
\(A=x^2+x+1\)
\(A=x^2+x+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
mà \(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>\dfrac{3}{4}>0\) với mọi x
\(\Rightarrow Dpcm\)