Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 202220=(20222)10=408848410
Vì 4088484 < 20222022 nên 408848410<2022202210
Vậy 202220<2022202210
Rất dễ nhận thấy là 20222022 lớn hơn 2022 rất nhiều lần
\(\Rightarrow\)\(2022^{20}< 20222022^{10}\)
Ta có: \(x:y=2:3\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau và \(x-y=4\), ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x-y}{2-3}=\dfrac{4}{-1}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=-4\cdot2=-8\\y=-4\cdot3=-12\end{matrix}\right.\)
Vậy \(x=-8;y=-12\).
Đáp án:
hoặc
Giải thích các bước giải:
Do
nhỏ nhất là
Ước dương của
Do lẻ và
Vậy số thoả mãn là hoặc
\(\dfrac{x+1}{3}=\dfrac{1-3x}{-5}\\ \Rightarrow-5\left(x+1\right)=3\left(1-3x\right)\\ \Rightarrow-5x-5=3-9x\\ \Leftrightarrow-5x+9x=3+5\\ \Rightarrow4x=8\\ \Rightarrow x=\dfrac{8}{4}=2\)
bạn ơi cho mình hỏi là phép tính thứ ba của bạn là ⇒−5x−5=3−9x thì tại sao bạn tính được như vậy ? Phiền bạn giúp mình nhé
a) Xét tam giác AMC và tam giác EMB có:
\(BM=MC\)(do M là trung điểm của BC)
\(\widehat{AMC}=\widehat{EMB}\) (2 góc đối đỉnh)
\(AM=ME\left(gt\right)\)
Nên tam giác AMC = tam giác EMB (c.g.c)(đpcm)
b) CMTT ý a ta có tam giác AMB = tam giác EMC (c.g.c)
=> \(\widehat{ABM}=\widehat{ECM}\)(2 góc tương ứng)
mà hai góc ở vị trí so le trong của AB và CE
=> AB//CE(đpcm)
c) Xét tam giác AIM và tam giác EKM có:
\(AM=EM\left(gt\right)\)
\(\widehat{MAI}=\widehat{MEK}\)(do tam giác AMC = tam giác EMB)
\(AI=EK\left(gt\right)\)
Nên tam giác AIM = tam giác EKM (c.g.c)
=> \(\widehat{AMI}=\widehat{EMK}\)
Ta có \(\widehat{AMI}+\widehat{IME}=180^o\)(hai góc kề bù)
Mà \(\widehat{AMI}=\widehat{EMK}\left(cmt\right)\)
=> \(\widehat{IME}+\widehat{EMK}=180^o\)
=> \(\widehat{IMK}=180^o\)
=> Ba điểm IMK thẳng hàng (đpcm)