Cho lăng trụ ABC.A'B'C'.I,K lần lượt là trung điểm BB' và A'C.M được xác định bởi hệ thức vectơ MB= k*vectơ MC.Tìm k để 4 điểm A,I,M,K đồng phẳng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow-2}=\dfrac{x-1+\sqrt{2x^2+1}}{4-x^2}\)
\(=\lim\limits_{x\rightarrow-2}=\dfrac{\left[\left(x-1\right)+\sqrt{2x^2+1}\right]\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}{\left(4-x^2\right)\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(x-1\right)^2-\left(2x^2+1\right)}{\left(4-x^2\right)\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{x^2-2x+1-2x^2-1}{\left(4-x^2\right)\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{-x^2-2x}{\left(4-x^2\right)\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}\)
\(=\lim\limits_{x\rightarrow-2}=-\dfrac{x}{\left(2-x\right)\left(x-1-\sqrt{2x^2+1}\right)}\)
\(=-\dfrac{1}{12}\)
`x^2 = 4x^2 - 9`
`<=> 9 = 4x^2 - x^2`
`<=> 9 = 3x^2`
`<=> x^2 = 3.`
`<=> x = +-sqrt 3`.