K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Dễ thấy S là một điểm chung của hai mặt phẳng (SAD) và (SBC).

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SAD) ∩ (SBC) = Sx

Và Sx // AD // BC.

b) Ta có: MN // IA // CD

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mà Giải sách bài tập Toán 11 | Giải sbt Toán 11 

(G là trọng tâm của ∆SAB) nên 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ GN // SC

SC ⊂ (SCD) ⇒ GN // (SCD)

c) Giả sử IM cắt CD tại K ⇒ SK ⊂ (SCD)

MN // CD ⇒

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a, Tam giác \(SAB\) vuông cân tại \(S\), có \(M\) là trung điểm của \(AB\)

\(\left. \begin{array}{l} \Rightarrow SM \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right\} \Rightarrow SM \bot \left( {ABCD} \right)\)

b) \(ABCD\) là hình chữ nhật \( \Rightarrow AB \bot A{\rm{D}}\)

\(SM \bot \left( {ABCD} \right) \Rightarrow SM \bot A{\rm{D}}\)

\( \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)

c) \(A{\rm{D}} \bot \left( {SAB} \right) \Rightarrow A{\rm{D}} \bot SB\)

Tam giác \(SAB\) vuông cân tại \(S\)\( \Rightarrow SA \bot SB\)

\(\left. \begin{array}{l} \Rightarrow SB \bot \left( {SA{\rm{D}}} \right)\\SB \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow \left( {SBC} \right) \bot \left( {SA{\rm{D}}} \right)\)

Tam giác \(SAB\) vuông cân tại \(S\), có \(M\) là trung điểm của \(AB\)

\(\left. \begin{array}{l} \Rightarrow SM \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right\} \Rightarrow SM \bot \left( {ABCD} \right)\)

b) \(ABCD\) là hình chữ nhật \( \Rightarrow AB \bot A{\rm{D}}\)

\(SM \bot \left( {ABCD} \right) \Rightarrow SM \bot A{\rm{D}}\)

\( \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)

c) \(A{\rm{D}} \bot \left( {SAB} \right) \Rightarrow A{\rm{D}} \bot SB\)

Tam giác \(SAB\) vuông cân tại \(S\)\( \Rightarrow SA \bot SB\)

\(\left. \begin{array}{l} \Rightarrow SB \bot \left( {SA{\rm{D}}} \right)\\SB \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow \left( {SBC} \right) \bot \left( {SA{\rm{D}}} \right)\)

31 tháng 10 2023

a: 

loading...

b: ABCD là hình chữ nhật

=>AB//CD và BC//AD

BC//AD

\(AD\subset\left(SAD\right)\)

BC không nằm trong mp(SAD)

Do đó: BC//(SAD)

c: AB//CD

\(CD\subset\left(SCD\right)\)

AB không nằm trong mp(SCD)

Do đó: AB//(SCD)

d: Xét ΔSAC có

O,H lần lượt là trung điểm của CA,CS

=>OH là đường trung bình của ΔSAC

=>OH//SA
OH//SA

\(SA\subset\left(SAB\right)\)

OH không nằm trong mp(SAB)

Do đó: OH//(SAB)

 

27 tháng 10 2023

a: loading...

b: BC//AD(ABCD là hình chữ nhật)

\(AD\subset\left(SAD\right)\)

BC không nằm trong mp(SAD)

Do đó: BC//(SAD)

c: AB//CD(ABCD là hình chữ nhật)

\(CD\subset\left(SCD\right)\)

AB không nằm trong mp(SCD)

Do đó: AB//(SCD)

d: Xét ΔSAC có

O,H lần lượt là trung điểm của CA,CS

=>OH là đường trung bình

=>OH//SA

OH//SA
\(SA\subset\left(SAB\right)\)

OH không nằm trong mp(SAB)

Do đó: OH//(SAB)

3 tháng 8 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi H là trung điểm của SC

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Gọi M’ là trung điểm của SA ⇒ MM′ // AD và MM′ = AD/2.

Mặt khác vì BC // AD và BC = AD/2 nên BC // MM′ và BC = MM′.

Do đó tứ giác BCMM’ là hình bình hành ⇒ CM // BM′ mà BM′ ⊂ (SAB)

⇒ CM // (SAB)

c) Ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác vì Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

OI ⊂ (BID) ⇒ SA // (BID)

a: Sửa đề; BC vuông góc SB

BC vuông góc AB

BC vuông góc SA

=>BC vuôg góc (SAB)

=>CB vuông góc SB

c: (SO;(SCD))=(SO;SK)=góc KSO(OK vuông góc DC tại K)

\(AO=\dfrac{AC}{2}=1.5a\)

\(SA=\sqrt{SC^2-AC^2}=\sqrt{\left(5a\right)^2-\left(3a\right)^2}=4a\)

\(SO=\sqrt{SA^2+AO^2}=\dfrac{a\sqrt{73}}{2}\)

\(AD=BC=\sqrt{\left(3a\right)^2-a^2}=2a\sqrt{2}\)

Xét ΔACD có

O là trung điểm của AC

OK//AD

=>K là trung điểm của CD

=>DK=CK=a/2

\(AK=\sqrt{\left(2a\sqrt{2}\right)^2+\left(\dfrac{a}{2}\right)^2}=\dfrac{a\sqrt{33}}{2}\)

\(SK=\sqrt{SA^2+AK^2}=\sqrt{\left(4a\right)^2+\dfrac{33}{4}a^2}=\dfrac{a\sqrt{97}}{2}\)

OK=AD/2=a căn 2

\(SO=\dfrac{a\sqrt{73}}{2}\)

\(cosKSO=\dfrac{SK^2+SO^2-OK^2}{2\cdot SK\cdot SO}\simeq0.96\)

=>góc KSO=16 độ

Câu c bn ch c/m đc OK vuông góc vs mp (SCD) 

Thì sao xác định đc góc cần tìm là OSK

22 tháng 12 2020

Hình câu c là tui vẽ riêng ra cho dễ nhìn thôi, còn hình vẽ trình bày vô bài lấy hình chung ở câu a và b nhó :v     

                  undefined undefined

 

23 tháng 12 2020

cảm ơn bạn nha