1) Tính
a)2xy+ x - y+xy^2 + 2xy
b)5xy^2+ 4y - 4x * 2y^2
c) √25 + √36 + √49 +...+√100
d) (1+4+9+16+...+9801+10000) - (1+8+27+64+125+...+729+1000)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{A+C+E}{3}\) + \(\dfrac{A+B+D}{3}\) = 40 + 28
\(\dfrac{2A}{3}\)+\(\dfrac{B+C+E+D}{3}\)= 68
\(\dfrac{2A}{3}\)+ 33 = 68
\(\dfrac{2A}{3}\)=35
2A = 35 X 3
2A = 105
A =\(\dfrac{105}{2}\)
Từ (1) \(\Rightarrow A+C+E=40\cdot3=120\)
Từ (2) \(\Rightarrow A+B+D=28\cdot3=84\)
Từ (3) \(\Rightarrow B+C+D+E=33\cdot3=99\)
Suy ra:
\(\left(A+C+E+A+B+D\right)-\left(B+C+D+E\right)=\left(120+84\right)-99\)
\(2A+\left(B+C+D+E\right)-\left(B+C+D+E\right)=105\)
\(2A=105\)
\(A=52,5\)
Vậy \(A=52,5\)
b: \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{100^2}< \dfrac{1}{99}-\dfrac{1}{100}\)
Do đó: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=>\(A< 1-\dfrac{1}{100}\)
=>A<1
=>0<A<1
=>A không là số tự nhiên
a: \(A=1+4+9+...+10000\)
\(=1^2+2^2+...+100^2\)
\(=\dfrac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}\)
\(=\dfrac{100\cdot101\cdot201}{6}\)
\(B=1+8+27+...+1000\)
\(=1^3+2^3+...+10^3=\left(1+2+...+10\right)^2\)
\(=55^2\)
=>\(A-B=\dfrac{100\cdot101\cdot201}{6}-55^2=335325\)
2 lần số vở của Cường là:
30+15+3x3=45+9=54(quyển)
Số vở của Cường là:
54:2=27(quyển)
Hai Trung bình cộng số quyển vở của ba bạn là :
30 + 15 + 3 = 48 ( quyển vở)
Trung bình cộng số quyển vở của ba bạn là :
48 : 2 = 24 ( quyển vở)
Số quyển vở của bạn Cường có là:
24 + 3 = 27 ( quyển vở)
Đáp số : 27 quyển vở
A = 12 + 22 + 32 + ... + 1002
A = 1 + 2 x (1 + 1) + 3 x (2 + 1) + ... + 100 x (99 + 1)
A = 1 + 2 x 1 + 2 + 3 x 2 + 3 + ... + 100 x 99 + 100
A = (1 + 2 + 3 + ... + 100) + (1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100)
Ta gọi biểu thức: 1 + 2 + 3 + ... + 100 = C
1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100 = D
C = (1 + 100) x 100 : 2 = 5 050
D = 1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100
3D = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3
3D = 1 x 2 x 3 + 2 x 3 x (4 - 1) +...+ 99 x 100 x (101 - 98)
3D = 1 x 2 x 3 + 2 x 3 x 4 - 2 x 3 x 1 +... - 99 x 100 x 98
3D = 98 x 99 x 100
3D = 970 200
D = 970 200 : 3
D = 323 400
A = 5 050 + 323 400 = 328 450
B = 13 + 23 + 33 + ... + 503
B = 1 + 2 x ( 22) + 3 x (32) + ... + 50 x (502)
B = 1 + 22 x (1 + 1) + 32 x (2 + 1) + ... + 502 x (49 + 1)
B = 12 + 1 x 22 + 22 + 2 x 32 + 32 + ... + 49 x 502 + 502
B = (12 + 22 + 32 + ... + 502) + (1 x 22 + 2 x 32 + ... + 49 x 502)
Đặt biểu thức: 12 + 22 + 32 + ... + 502 = E
E = 1 + 2 x (1 + 1) + 3 x (2 + 1) + ... + 50 x (49 + 1)
E = 1 + 1 x 2 + 2 + 3 x 2 + 3 + ... + 50 x 49 + 50
E = (1 + 2 + 3 + ... + 50) + (1 x 2 + 2 x 3 + ... + 49 x 50)
Đặt biểu thức: 1 + 2 + 3 + ... + 50 = F
1 x 2 + 2 x 3 + ... + 49 x 50 = G
F = (1 + 50) x 50 : 2 = 1275
3G = 1 x 2 x 3 + 2 x 3 x 3 + ... + 49 x 50 x 3
3G = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ... + 49 x 50 x (51 - 48)
3G = 1 x 2 x 3 + 2 x 3 x 4 - 2 x 3 x 1 + ... + 49 x 50 x 51 - 49 x 50 x 48
3G = 49 x 50 x 51
3G = 124950
G = 124950 : 3 = 41650
B = 41650 + 1275 = 42925
b) B = 3 + 32 + 33 + 34 + ... + 3100
3B = 32 + 33 + 34 + ... + 3101
3B - B = 3101 - 3
2B = 3101 - 3
Ta có:
2B + 3n = 3101
3101 - 3 + 3n = 3101
⇒ 3n = 3
31 = 3
⇒ n = 1
b: \(B=3+3^2+...+3^{100}\)
=>\(3B=3^2+3^3+...+3^{101}\)
=>\(3B-B=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\)
=>\(2B=3^{101}-3\)
\(2B+3^n=3^{101}\)
=>\(3^{101}-3+3^n=3^{101}\)
=>\(3^n=3\)
=>n=1
\(75\times\left(x+157\right)=24450\)
=>\(x+157=\dfrac{24450}{75}=326\)
=>x=326-157=169
x:y:z=1:2:3
=>\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
mà 2x+6y+2z=60
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x+6y+2z}{2\cdot1+6\cdot2+2\cdot3}=\dfrac{60}{20}=3\)
=>\(x=3\cdot1=3;y=3\cdot2=6;z=3\cdot3=9\)
Ta có: \(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{2x}{2}=\dfrac{6y}{12}=\dfrac{2z}{6}\)
Áp dụng tính chất dãy tỉ sống bằng nhau, ta có:
\(\dfrac{2x}{2}=\dfrac{6y}{12}=\dfrac{2z}{6}=\dfrac{2x+6y+2z}{2+12+6}=\dfrac{60}{20}=3\)
Do đó:
\(\dfrac{x}{1}=3\Rightarrow x=1.3=3\)
\(\dfrac{y}{2}=3\Rightarrow y=2.3=6\)
\(\dfrac{z}{3}=3\Rightarrow z=3.3=9\)
Vậy x = 3; y = 6; z = 9.
\(#NqHahh\)
a: \(2xy+x-y+xy^2+2xy\)
\(=x-y+xy^2+\left(2xy+2xy\right)\)
\(=x-y+xy^2+4xy\)
b: \(5xy^2+4y-4x\cdot2y^2\)
\(=4y+5xy^2-8xy^2\)
\(=4x-3xy^2\)
c: \(\sqrt{25}+\sqrt{36}+\sqrt{49}+...+\sqrt{100}\)
=5+6+7+8+9+10
=15+15+15
=45
d: Đặt \(A=1+4+9+16+...+9801+10000\)
Đặt \(B=1+8+27+...+729+1000\)
\(A=1+4+9+...+10000\)
\(=1^2+2^2+...+100^2\)
\(=\dfrac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}\)
\(=\dfrac{100\cdot101\cdot201}{6}\)
\(B=1+8+27+...+1000\)
\(=1^3+2^3+...+10^3=\left(1+2+...+10\right)^2\)
\(=55^2\)
=>\(A-B=\dfrac{100\cdot101\cdot201}{6}-55^2=335325\)