(2x+1)mũ4=(2x+1)mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(x-5\right)-x\left(x-10\right)+1=26\)
\(2x^2-10x-x^2+10x-25=0\)
\(x^2-25=0\)
\(\left(x-5\right)\left(x+5\right)=0\)
\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
\(7\left(2x-5\right)-5\left(7x-2\right)+2\left(5x+7\right)=\left(x-2\right)-\left(x+4\right)\)
\(14x-35-35x+10+10x+14=-6\)
\(-11x-11=-6\)
\(x=-\dfrac{5}{11}\)
\(10x-5-32+12x=7\)
\(22x=44\)
\(x=2\)
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(a^2+b^2+c^2=ab+bc+ca\)
\(\dfrac{1}{2}\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)
\(< =>a=b=c\)
a) \(x^4+2x^3+x^2=\left(x^2+x\right)^2\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y=\left(x-y\right)^3-\left(x+y\right)\)
c) \(5x^2-10xy+5y^2-20z^2=\left(\sqrt{5x}-\sqrt{5y}\right)^2-20z^2\)
d) \(x^2+4x+3=x^2+3x+x+3=x\left(x+3\right)+\left(x+3\right)=\left(x+1\right)\left(x+3\right)\)
Mình nghĩ đề là Cho \(x+\dfrac{1}{x}=3\) phù hợp hơn nhé.
Ta có: \(x+\dfrac{1}{x}=3\)\(\Rightarrow\left(x+\dfrac{1}{x}\right)^2=3^2\)
\(\Leftrightarrow x^2+2.x.\dfrac{1}{x}+\dfrac{1}{x^2}=9\Leftrightarrow x^2+2+\dfrac{1}{x^2}=9\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}=7\)
Vậy \(x^2+\dfrac{1}{x^2}=7\)
\(4)25-1^2=\left(5-1\right)\left(5+1\right)=4.6=24\\ 5)a^2-9=a^2-3^2=\left(a-3\right)\left(a+3\right)\)
\(\left(2x+1\right)^4=\left(2x+1\right)^2\)
\(\Rightarrow\left(2x+1\right)^4-\left(2x+1\right)^2=0\)
\(\left(2x+1\right)^2\left[\left(2x+1\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x+1\right)^2=0\\\left(2x+1\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\\left(2x+1\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\2x+1=1\\2x+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=0\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[\left(2x+1\right)^2\right]^2=\left(2x+1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2=\left(2x+1\right)\)
\(\Leftrightarrow2x+1=1\left(x\ne-\dfrac{1}{2}\right)\)
\(\Leftrightarrow x=0\)